精英家教網 > 初中數學 > 題目詳情

已知:如圖所示,等腰梯形ABCD中,AB∥CD,AD=BC=4,DC=3,△ADE≌△ECB,
(1)圖中有幾個平行四邊形,請說明理由.
(2)求等腰梯形ABCD的周長.

解:(1)圖中有2個平行四邊形,分別是:四邊形AECD,四邊形DEBC;
理由如下:
∵△ADE≌△ECB,
∴∠A=∠CEB,
∴AD∥CE,
∵AB∥CD,
∴四邊形AECD是平行四邊形,
同理:四邊形DEBC是平行四邊形;

(2)∵四邊形AECD和四邊形DEBC是平行四邊形,
∴DC=AE=EB=3,
∴等腰梯形ABCD的周長=3+4+3+3+4=17.
分析:(1)圖中有2個平行四邊形,四邊形AECD是平行四邊形,四邊形DEBC是平行四邊形;根據全等三角形的性質和平行四邊形的判定方法證明即可;
(2)由(1)可知四邊形AECD和四邊形DEBC是平行四邊形,所以DC=AE=EB=3,進而求出等腰梯形的周長.
點評:本題考查了等腰梯形的性質、全等三角形的性質以及平行四邊形的判定和性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖所示,等腰梯形ABCD中,AB∥CD,AD=BC=4,DC=3,△ADE≌△ECB,
(1)圖中有幾個平行四邊形,請說明理由.
(2)求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

已知:如圖所示,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.

(1)求證:AB=AD;
(2)若AD=6,∠C=60°,求梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖所示,等腰梯形ABCD中,ABCD,AD=BC=4,DC=3,△ADE≌△ECB,
(1)圖中有幾個平行四邊形,請說明理由.
(2)求等腰梯形ABCD的周長.
精英家教網

查看答案和解析>>

科目:初中數學 來源:專項題 題型:證明題

已知,如圖所示,等腰直角三角形ABC,∠BAC=90° ,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45° 求證:BD2+EC2=DE2。

查看答案和解析>>

同步練習冊答案