【題目】如圖,某海監(jiān)船向正西方向航行,在A處望見一艘正在作業(yè)的漁船D在南偏西45°方向,海監(jiān)船航行到B處時(shí),望見漁船D在南偏東45°方向,又航行半小時(shí)到達(dá)C處望見漁船D在南偏東62°方向,若海監(jiān)船的速度為40海里/小時(shí),求A、B之間的距離.(精確到0.1海里,參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan62°≈1.88

【答案】A、B之間的距離為45.5海里.

【解析】

過點(diǎn)DDEAB于點(diǎn)E,設(shè)DE=x海里,在RtCDE中表示出CE,在RtBDE中表示出BE,再由CB=20海里,可得出關(guān)于x的方程,解出后即可計(jì)算AB的長度.

過點(diǎn)DDEAB于點(diǎn)E,

∵∠ADE=∠BDE45°,

AEBEDE,

設(shè)DEx海里,則BEx海里,

BC,

CEx+20,

RtCDE中,∠CDE62°,

,

,

x22.73,

AB2x2×22.7345.5,

答:A、B之間的距離為45.5海里.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長線交于點(diǎn) ,經(jīng)測量

1)求線段的長度;(結(jié)果 精確到

2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、O在△ABC的邊AC上,以CD為直徑的O與邊AB相切于點(diǎn)E,連結(jié)DEOB,且DEOB

1)求證:BCO的切線.

2)設(shè)OBO交于點(diǎn)F,連結(jié)EF,若ADODDE4,求弦EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),點(diǎn)C在反比例函數(shù)的圖像上,過點(diǎn)C軸于點(diǎn)D,連接,已知

1,點(diǎn)A的坐標(biāo)為________________

2)點(diǎn)在線段上,連接,且,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx4 x軸、y軸的交點(diǎn)為A,B.按以下步驟作圖:

以點(diǎn) A 為圓心,適當(dāng)長度為半徑作弧,分別交 AB,x 軸于點(diǎn) C,D;

分別以點(diǎn) CD 為圓心,大于CD的長為半徑作弧,兩弧在OAB內(nèi)交于點(diǎn)M;作射線AM,交 y 軸于點(diǎn)E.則點(diǎn) E 的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶70華誕期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.百姓超市320元購進(jìn)一批葡萄,上市后很快脫銷,該超市又用680元購進(jìn)第二批葡萄,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但進(jìn)價(jià)每市斤多了0.2元.

1)該超市第一批購進(jìn)這種葡萄多少市斤?

2)如果這兩次購進(jìn)的葡萄售價(jià)相同,且全部售完后總利潤不低于,那么每市斤葡萄的售價(jià)應(yīng)該至少定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACDF,點(diǎn)BAC上,點(diǎn)EDF上,連結(jié)AE,BD相交于點(diǎn)P,連結(jié)CE,BF相交于點(diǎn)Q,若ABEF,BCDE

1)求證:四邊形BPEQ為平行四邊形;

2)若DP2BP,BF3,CE6.求證:四邊形BPEQ為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.

(1)求證:AE⊥BF;

(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點(diǎn)Q,求sin∠BQP的值;

(3)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的邊長為4時(shí),直接寫出四邊形GHMN的面積.

查看答案和解析>>

同步練習(xí)冊答案