【題目】如圖,某海監(jiān)船向正西方向航行,在A處望見一艘正在作業(yè)的漁船D在南偏西45°方向,海監(jiān)船航行到B處時(shí),望見漁船D在南偏東45°方向,又航行半小時(shí)到達(dá)C處望見漁船D在南偏東62°方向,若海監(jiān)船的速度為40海里/小時(shí),求A、B之間的距離.(精確到0.1海里,參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長線交于點(diǎn) ,經(jīng)測量,
(1)求線段的長度;(結(jié)果 精確到)
(2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點(diǎn)E,連結(jié)DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設(shè)OB與⊙O交于點(diǎn)F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),點(diǎn)C在反比例函數(shù)的圖像上,過點(diǎn)C作軸于點(diǎn)D,連接,已知.
(1),點(diǎn)A的坐標(biāo)為________________.
(2)點(diǎn)在線段上,連接,且,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線yx4與 x軸、y軸的交點(diǎn)為A,B.按以下步驟作圖:
①以點(diǎn) A 為圓心,適當(dāng)長度為半徑作弧,分別交 AB,x 軸于點(diǎn) C,D;
②分別以點(diǎn) C,D 為圓心,大于CD的長為半徑作弧,兩弧在∠OAB內(nèi)交于點(diǎn)M;③作射線AM,交 y 軸于點(diǎn)E.則點(diǎn) E 的坐標(biāo)為____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶70華誕期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.“百姓超市”用320元購進(jìn)一批葡萄,上市后很快脫銷,該超市又用680元購進(jìn)第二批葡萄,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但進(jìn)價(jià)每市斤多了0.2元.
(1)該超市第一批購進(jìn)這種葡萄多少市斤?
(2)如果這兩次購進(jìn)的葡萄售價(jià)相同,且全部售完后總利潤不低于,那么每市斤葡萄的售價(jià)應(yīng)該至少定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC∥DF,點(diǎn)B在AC上,點(diǎn)E在DF上,連結(jié)AE,BD相交于點(diǎn)P,連結(jié)CE,BF相交于點(diǎn)Q,若AB=EF,BC=DE.
(1)求證:四邊形BPEQ為平行四邊形;
(2)若DP=2BP,BF=3,CE=6.求證:四邊形BPEQ為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點(diǎn)Q,求sin∠BQP的值;
(3)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的邊長為4時(shí),直接寫出四邊形GHMN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com