【題目】在平面直角坐標系中,拋物線y=x2如圖所示,已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4,過點A4作A4A5∥x軸交拋物線于點A5,則點A5的坐標為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.
(1)求EG:BG的值;
(2)求證:AG=OG;
(3)設AG=a,GH=b,HO=c,求a:b:c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在一個點M,使得PM = MC,則稱點P為⊙C的“等徑點”.已知點D,E,F.
(1)當⊙O的半徑為1時,
①在點D,E,F中,⊙O的“等徑點”是 ;
②作直線EF,若直線EF上的點T(m,n)是⊙O的“等徑點”,求m的取值范圍.
(2)過點E作EG⊥EF交x軸于點G,若△EFG上的所有點都是某個圓的“等徑點”,求這個圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.
(1)表中m= ,n= ;
(2)請在圖中補全頻數(shù)直方圖;
(3)甲同學的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在 分數(shù)段內(nèi);
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某養(yǎng)殖戶長期承包一口魚糖養(yǎng)魚,每年養(yǎng)殖一批,從魚苗放入養(yǎng)到成品需要300天,魚糖承包費用每年5000元,他記錄了前幾年平均每天投入飼料量(單位:kg)與年底成品魚(達到一定規(guī)格可以銷售)產(chǎn)量之間的關系如下表:
平均每天投入飼料(kg) | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 |
成品魚產(chǎn)量(kg) | 2800 | 3000 | 3200 | 3600 | 3900 | 4000 | 3900 | 3600 |
(1)請用適當?shù)暮瘮?shù)模型描述平均每天投入飼料數(shù)量與成品魚產(chǎn)量之間的關系;
(2)如果今年的飼料價格為1.6元/kg,成品魚銷售價為20元/kg,魚苗費用4000元,假設養(yǎng)成的成品魚全部都能按此價格賣出.請建立適當?shù)暮瘮?shù)模型平均每天投入飼料多少千克時,該養(yǎng)殖戶當年在該魚糖養(yǎng)殖這種魚獲得的利潤最多,最多利潤是多少元?(利潤=銷售收入﹣飼料成本﹣魚糖承包費﹣魚苗成本).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為反比例函數(shù)y=(其中x>0)圖象上的一點,在x軸正半軸上有一點B,OB=4.連接OA、AB,且OA=AB=2.
(1)求k的值;
(2)過點B作BC⊥OB,交反比例函數(shù)y=(x>0)的圖象于點C.
①連接AC,求△ABC的面積;
②在圖上連接OC交AB于點D,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點,經(jīng)過點的拋物線與軸的另一個交點為點,點是拋物線上一點,過點作軸于點,連接,設點的橫坐標為.
求拋物線的解析式;
當點在第三象限,設的面積為,求與的函數(shù)關系式,并求出的最大值及此時點的坐標;
連接,若,請直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),二次函數(shù)y=ax2﹣bx(a≠0)的圖象與x軸、直線y=x的交點分別為點A(4,0)、B(5,5).
(1)a= ,b= ,∠AOB= °;
(2)連接AB,點P是拋物線上一點(異于點A),且∠PBO=∠OBA,求點P的坐標 ;
(3)如圖(2),點C、D是線段OB上的動點,且CD=2.設點C的橫坐標為m.
①過點C、D分別作x軸的垂線,與拋物線相交于點F、E,連接EF.當CF+DE取得最大值時,求m的值并判斷四邊形CDEF的形狀;
②連接AC、AD,求m為何值時,AC+AD取得最小值,并求出這個最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com