3.點C是線段AB的黃金分割點,且AB=6cm,則BC的長為(  )
A.(3$\sqrt{5}$-3)cmB.(9-3$\sqrt{5}$)cmC.(3$\sqrt{5}$-3)cm 或(9-3$\sqrt{5}$)cmD.(9-3$\sqrt{5}$)cm 或(6$\sqrt{5}$-6)cm

分析 根據(jù)黃金分割點的定義,知BC可能是較長線段,也可能是較短線段,則BC=$\frac{\sqrt{5}-1}{2}$AB或BC=$\frac{3-\sqrt{5}}{2}$AB,將AB=6cm代入計算即可.

解答 解:∵點C是線段AB的黃金分割點,且AB=6cm,
∴BC=$\frac{\sqrt{5}-1}{2}$AB=3$\sqrt{5}$-3(cm),
或BC=$\frac{3-\sqrt{5}}{2}$AB=9-3$\sqrt{5}$(cm).
故選C.

點評 本題考查了黃金分割的概念:把一條線段AB分成兩部分AC與BC,使其中較長的線段AC為全線段AB與較短線段BC的比例中項,這樣的線段分割叫做黃金分割,點C是線段AB的黃金分割點.熟記較長的線段AC=$\frac{\sqrt{5}-1}{2}$AB,較短的線段BC=$\frac{3-\sqrt{5}}{2}$AB是解題的關(guān)鍵.注意線段AB的黃金分割點有兩個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知:△ABC,∠ABC=90°,tan∠BAC=$\frac{1}{2}$,點D點在AC邊的延長線上,且DB2=DC•DA(如圖).
(1)求$\frac{DC}{CA}$的值;
(2)如果點E在線段BC的延長線上,聯(lián)結(jié)AE.過點B作AC的垂線,交AC于點F,交AE于點G.
①如圖1,當(dāng)CE=3BC時,求$\frac{BF}{FG}$的值;
②如圖2,當(dāng)CE=BC時,求$\frac{{S}_{△BCD}}{{S}_{△BEG}}$的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.(1)問題發(fā)現(xiàn):
如圖,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.
填空:①∠AEB的度數(shù)為60°;
②線段AD、BE之間的數(shù)量關(guān)系是AD=BE.
(2)拓展探究:
如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,且交BC于點F,連接BE.
①請判斷∠AEB的度數(shù)并說明理由;
②若∠CAF=∠BAF,BE=2,試求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.若∠A的補角加上30°是∠A的余角的5倍,則∠A的度數(shù)為( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.已知反比例函數(shù)y=$\frac{1-2m}{x}$的圖象上有兩點A(x1,y1),B(x2,y2),當(dāng)x1<0<x2時,有y1<y2,則m的取值范圍是( 。
A.m<0B.m>0C.m<$\frac{1}{2}$D.m>$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.下列語句正確的是(  )
A.同角的余角和補角相等
B.三條直線兩兩相交,必定有三個交點
C.線段AB就是點A與點B的距離
D.兩點確定一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知一元二次方程x2+3x+m-1=0.
(1)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.
(2)若方程有兩個相等的實數(shù)根,其此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知⊙P的半徑為3,圓心O在拋物線y=$\frac{1}{2}$x2-1上運動,當(dāng)⊙P與x軸正半軸相切時,圓心P的坐標(biāo)為(2$\sqrt{2}$,3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.下列計算正確的是( 。
A.a3•a2=a6B.x8÷x4=x2C.(a+b)(a-b)=a2+b2D.(-x3y)2=x6y2

查看答案和解析>>

同步練習(xí)冊答案