【題目】如圖,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2,點(diǎn)P2恰好在直線l上.

(1)寫出點(diǎn)P2的坐標(biāo);

(2)求直線l所表示的一次函數(shù)的表達(dá)式;

(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3.請判斷點(diǎn)P3是否在直線l上,并說明理由.

【答案】P2(3,3);y=2x﹣3;在.

【解析】

(1)設(shè)直線l所表示的一次函數(shù)的表達(dá)式為y=kx+b(k≠0),把點(diǎn)P1、P2的坐標(biāo)代入,利用待定系數(shù)法求得系數(shù)的值;(2)根據(jù)平移的規(guī)律得到點(diǎn)P3的坐標(biāo)為(6,9),代入直線方程進(jìn)行驗(yàn)證即可.

本題解析:(1)設(shè)直線l所表示的一次函數(shù)的表達(dá)式為y=kx+bk≠0),

∵點(diǎn)P1(2,1),P2(3,3)在直線l上,

, 解得

∴直線l所表示的一次函數(shù)的表達(dá)式為y=2x﹣3.

(2)點(diǎn)P3在直線l上.

由題意知點(diǎn)P3的坐標(biāo)為(6,9),

∵2×6﹣3=9,

∴點(diǎn)P3在直線l上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 閱讀理解我們知道在直角三角形中,有無數(shù)組勾股數(shù),例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個(gè)連續(xù)正整數(shù)組成的勾股數(shù).

解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個(gè)連續(xù)偶數(shù)能組成勾股數(shù)?

答: ,若存在,試寫出一組勾股數(shù): .

在無數(shù)組勾股數(shù)中,是否還存在其它的三個(gè)連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

在無數(shù)組勾股數(shù)中,是否存在三個(gè)連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

探索升華:是否存在銳角ABC三邊也為連續(xù)正整數(shù);且同時(shí)還滿足:∠BCA;ABC=2BAC?若存在,求出ABC三邊的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師和小明同學(xué)玩數(shù)學(xué)游戲.老師取出一個(gè)不透明的口袋,口袋中裝有三張分別標(biāo)有數(shù)字1,2,3的卡片,卡片除數(shù)字外其余都相同,老師要求小明同學(xué)兩次隨機(jī)抽取一張卡片,并計(jì)算兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.于是小明同學(xué)用畫樹狀圖的方法尋求他兩次抽取卡片的所有可能結(jié)果.如圖是小明同學(xué)所畫的正確樹狀圖的一部分.

(1)補(bǔ)全小明同學(xué)所畫的樹狀圖;

(2)求小明同學(xué)兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為   

(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:;

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中點(diǎn)A1、A2、…、An在x軸上,點(diǎn)B1、B2、…、Bn在直線y=x上,已知OA2=1,則OA2015的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)為培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級(jí)準(zhǔn)備開設(shè)神奇魔方、魅力數(shù)獨(dú)、數(shù)學(xué)故事、趣題巧解四門選修課(每位學(xué)生必須且只選其中一門)

(1)學(xué)校對(duì)七年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,得到如圖所示的統(tǒng)計(jì)圖,根據(jù)該統(tǒng)計(jì)圖,請估計(jì)該校七年級(jí)480名學(xué)生選數(shù)學(xué)故事的人數(shù)。

(2)學(xué)校將選數(shù)學(xué)故事的學(xué)生分成人數(shù)相等的A,B,C三個(gè)班,小聰、小慧都選擇了數(shù)學(xué)故事,已知小聰不在A班,求他和小慧被分到同一個(gè)班的概率(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點(diǎn)A1,0),B,0),且與y軸相交于點(diǎn)C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】瞳瞳做一道數(shù)學(xué)題:求代數(shù)式當(dāng)x=-1時(shí)的值,由于瞳瞳粗心把式子中的某一項(xiàng)前的“+”號(hào)錯(cuò)誤地看成了“—”號(hào),算出代數(shù)式的值是-11,那么瞳瞳看錯(cuò)的是 次項(xiàng)前的符號(hào),寫出x=-1x=1時(shí)代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈爾濱地鐵二號(hào)線正在進(jìn)行修建,現(xiàn)有大量的殘土需要運(yùn)輸.某車隊(duì)有載重量為8噸、10噸的卡車共12臺(tái),全部車輛運(yùn)輸一次可以運(yùn)輸110噸殘土.

(1)求該車隊(duì)有載重量8噸、10噸的卡車各多少輛?

(2)隨著工程的進(jìn)展,該車隊(duì)需要一次運(yùn)輸殘土不低于165噸,為了完成任務(wù),該車隊(duì)準(zhǔn)備再新購進(jìn)這兩種卡車共6輛,則最多購進(jìn)載重量為8噸的卡車多少輛?

查看答案和解析>>

同步練習(xí)冊答案