(2010•赤峰)關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如:
tan105°=tan(45°+60°)====-(2+).
根據(jù)上面的知識,你可以選擇適當?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC為42m,求建筑物CD的高.

【答案】分析:先由俯角β的正切值及BC求得AB,再由俯角α的正切值及BC求得A、D兩點垂直距離.CD的長由二者相減即可求得.
解答:解:由于α=60°,β=75°,BC=42,
則AB=BC•tanβ=42tan75°=42•=42•=42(),
A、D垂直距離為BC•tanα=42,
∴CD=AB-42=84(米).
答:建筑物CD的高為84米.
點評:本題考查俯角的定義,要求學生能借助俯角構(gòu)造直角三角形并解直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•赤峰)已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P的坐標.
(3)設(shè)拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年內(nèi)蒙古赤峰市中考數(shù)學試卷(解析版) 題型:解答題

(2010•赤峰)已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P的坐標.
(3)設(shè)拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《概率》(02)(解析版) 題型:選擇題

(2010•赤峰)某一超市在“五•一”期間開展有獎促銷活動,每買100元商品可參加抽獎一次,中獎的概率為.小張這期間在該超市買商品獲得了三次抽獎機會,則小張( )
A.能中獎一次
B.能中獎兩次
C.至少能中獎一次
D.中獎次數(shù)不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:2010年內(nèi)蒙古赤峰市中考數(shù)學試卷(解析版) 題型:解答題

(2010•赤峰)關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如:
tan105°=tan(45°+60°)====-(2+).
根據(jù)上面的知識,你可以選擇適當?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC為42m,求建筑物CD的高.

查看答案和解析>>

同步練習冊答案