如圖,點AB,將點A向下平移2cm到點C,將點B向右平移3cm至點D,畫出點CD

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4.將紙片的直角部分翻折,使點C落在精英家教網(wǎng)AB邊上,記為D點,AE為折痕,E在y軸上.
(1)在如圖所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長.
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?
(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玄武區(qū)二模)如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動,速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運動.
(1)當(dāng)t=5秒時,點P走過的路徑長為
19
19
;當(dāng)t=
3
3
秒時,點P與點E重合;
(2)當(dāng)點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應(yīng)點M落在EF上,點F的對應(yīng)點記為點N,當(dāng)EN⊥AB時,求t的值;
(3)當(dāng)點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,A點的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從O點出發(fā)沿OC向C點運動,動點Q從B點出發(fā)沿BA向A點運動,P,Q兩點同時出發(fā),速度均為1個單位/秒。設(shè)運動時間為t秒.

(1)求線段BC的長;
(2)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點B逆時針旋轉(zhuǎn)得到△BE′F′,使點E的對應(yīng)點E′落在線段AB上,點F的對應(yīng)點是F′,E′F′交x軸于點G,連接PF、QG,當(dāng)t為何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,A點的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從O點出發(fā)沿OC向C點運動,動點Q從B點出發(fā)沿BA向A點運動,P,Q兩點同時出發(fā),速度均為1個單位/秒。設(shè)運動時間為t秒.

(1)求線段BC的長;

(2)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:

(3)在(2)的條件下,將△BEF繞點B逆時針旋轉(zhuǎn)得到△BE′F′,使點E的對應(yīng)點E′落在線段AB上,點F的對應(yīng)點是F′,E′F′交x軸于點G,連接PF、QG,當(dāng)t為何值時,?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點0為坐標(biāo)原點,A點的坐標(biāo)為(3,0),以0A為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從0點出發(fā)沿0C向C點運動,動點Q從B點出發(fā)沿BA向A點運動,P,Q兩點同時出發(fā),速度均為1個單位/秒。設(shè)運動時間為t秒.

    (1)求線段BC的長;

    (2)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:

    (3)在(2)的條件下,將△BEF繞點B逆時針旋轉(zhuǎn)得到△BE1F1,使點E的對應(yīng)點E1落在線段AB上,點F的對應(yīng)點是F1,E1F1交x軸于點G,連接PF、QG,當(dāng)t為何值時,2BQ-PF= QG?

查看答案和解析>>

同步練習(xí)冊答案