直線y=-kx+k-3與直線y=kx在同一坐標系中的大致圖象可能是


  1. A.
  2. B.
  3. C.
  4. D.
B
分析:若y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,可對A、D進行判斷;若y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,則可對B、C進行判斷.
解答:A、y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,所以A選項錯誤;
B、y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,所以B選項正確;
C、y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,所以C選項錯誤;
D、y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,所以D選項錯誤.
故選B.
點評:本題考查了一次函數(shù)的圖象:一次函數(shù)y=kx+b(k≠0)的圖象為一條直線,當k>0,圖象過第一、三象限;當k<0,圖象過第二、四象限;直線與y軸的交點坐標為(0,b).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知如圖示直線y=kx+b與反比例函數(shù)y=
6
x
(x>0)相交于A(1,m)和B(n,2)兩點.
(1)求一次函數(shù)y=kx+b的函數(shù)解析式;
(2)將一次函數(shù)y=kx+b的圖象沿x軸負方向平移2個單位后,試問新圖象與反比例函數(shù)y=
6
x
的圖象是否有交點,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,設直線y=kx(k<0)與雙曲線y=-
5x
相交于A(x1,y1),B(x2,y2)兩點,
則5x1y2-3x2y1的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,平面直角坐標系xOy中,直線y=kx+b(k≠0)與直線y=mx(m≠0)交于點A(-2,4).
(1)求直線y=mx(m≠0)的解析式;
(2)若直線y=kx+b(k≠0)與另一條直線y=2x交于點B,且點B的橫坐標為-4,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

平面直角坐標系中,原點到直線y=kx+b的距離公式為d=
|b|
k2+1
,根據這個公式解答下列問題:
(1)原點到直線y=-
4
3
x+4的距離為
 

(2)若原點到y(tǒng)=(1-k)x+2k的距離為該直線與y軸交點到原點距離的一半,則k=
 

(3)若(1)中的直線與y軸、x軸交于A、B兩點,直線AC與x軸交于C點,若∠ABC的鄰補角是∠ACB的鄰補角的2倍,求原點到直線AC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直線y=kx+4分別于x軸、y軸相交于點A、B,O是坐標原點,A點的坐標為(4,0),P是OB上(O、B兩點除外)的一點,過P作PC⊥y軸交直線AB于C,過點C作CD⊥x軸,垂足為D,設線段PC的長為l,點P的坐標為(0,m)
(1)求k的值;
(2)如果點P在線段OB(O、B兩點除外)上移動,求l于m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當點P運動到線段OB的中點時,四邊形OPCD為正方形,將正方形OPCD沿著x軸的正方向移動,設平移的距離為a(0<a<4),正方形OPCD于△AOB重疊部分的面積為S.試求S與a的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案