【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE∥AC,CE∥BD,DE、CE相交于點E.
(1)求證:四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長和面積.
【答案】
(1)證明:∵DE∥OC,CE∥OD,
∵四邊形OCED是平行四邊形.
∴OC=DE,OD=CE
∵四邊形ABCD是矩形,
∴AO=OC=BO=OD.
∴CE=OC=BO=DE.
∴四邊形OCED是菱形
(2)解:如圖,連接OE.
在Rt△ADC中,AD=4,CD=3
由勾股定理得,AC=5∴OC=2.5
∴C菱形OCED=4OC=4×2.5=10,
在菱形OCED中,OE⊥CD,又∵OE⊥CD,
∴OE∥AD.
∵DE∥AC,OE∥AD,
∴四邊形AOED是平行四邊形,
∴OE=AD=4.
∴S菱形OCED= .
【解析】(1)首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD,即可判定四邊形CODE是菱形,(2)根據(jù)S△ODC= S矩形ABCD以及四邊形OCED的面積=2S△ODC即可解決問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BAD的平分線交BC邊于點M,而MD平分∠AMC,若∠MDC=45°,則∠BAD= , ∠ABC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.
(1)當(dāng)∠BEF=45°時,求證:CF=AE;
(2)當(dāng)B′D=B′C時,求BF的長;
(3)求△CB′F周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的邊長是13,O是對角線的交點,過O點的三條直線將菱形分成陰影和空白部分.若菱形一條對角線長為10,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一人患了流感,經(jīng)過兩輪傳染后共有64人患了流感,則每輪傳染中平均一個人傳染的人數(shù)是
A.5人B.6人C.7人D.8人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展課外球類特色的體育活動,決定開設(shè)A:羽毛球、B:籃球、C:乒乓球、D:足球四種球類項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項目的人數(shù)所占的百分比為 , 其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是度;
(2)請把條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校有學(xué)生3000人,請根據(jù)樣本估計全校最喜歡足球的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4 , 給出如下結(jié)論: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點在矩形的對角線上.
其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com