【題目】在中,,CD是中線,,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E、F,DF與AE交于點M,DE與BC交于點N.
(1)如圖1,若,求證:;
(2)如圖2,在繞點D旋轉(zhuǎn)的過程中,試證明恒成立;
(3)若,,求DN的長.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根據(jù)全等三角形的性質(zhì)即可的結(jié)論;
(2)證得△CDF∽△CED,根據(jù)相似三角形的性質(zhì)得到,即CD2=CECF;
(3)如圖,過D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,當(dāng)CD=2,時,求得,再推出△CEN∽△GDN,根據(jù)相似三角形的性質(zhì)得到,求出GN,再根據(jù)勾股定理即可得到結(jié)論.
(1)證明:∵,,CD是中線,
∴,,
∴.
在與中,,
∴.
∴;
(2)證明:∵,
∴
∵,
∴.
∴.
∴,即.
(3)如圖,過D作于點G,
則,.
當(dāng),時,
由,得.
在中,
.
∵,,
∴.
∴,
∴.
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】官渡區(qū)某校八年級(1)班同學(xué)為了解某市2019年小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)都分家庭,并將調(diào)查數(shù)據(jù)進行如下整理:
月均用水量(噸) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
請解答下列問題:
(1)填空:樣本容量是______,______,_______;
(2)把頻數(shù)分布直方圖補充完整;
(3)若該小區(qū)有1000戶家庭,請估計該小區(qū)月均用水量滿足的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,和交于點,點是邊上的動點(不與點,重合),連接并延長交于點,連接,若是等腰三角形,則的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:
(1)請問采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線.給出下列結(jié)論:
①; ②; ③; ④.
其中,正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校團委發(fā)起“愛心儲蓄”活動,鼓勵學(xué)生將自己的壓歲錢存入銀行,定期一年,到期后取回本金,而把利息捐給家庭貧困的兒童.學(xué)校共有學(xué)生1200人全部參加了此項活動,圖1是該校各年級學(xué)生人數(shù)比例分布的扇形統(tǒng)計圖,圖2是該校學(xué)生人均存款情況的條形統(tǒng)計圖.
(1)求該學(xué)校的人均存款數(shù);
(2)若銀行一年定期存款的年利率是2.25%,且每702元能提供給1位家庭貧困兒童一年的基本費用,那么該學(xué)校一年能夠幫助多少位家庭貧困兒童?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的綜合素養(yǎng),某校開設(shè)了五門手工活動課.按照類別分為:“剪紙”、“沙畫”、“葫蘆雕刻”、“泥塑”、“插花”.為了了解學(xué)生對每種活動課的喜愛情況,隨機抽取了部分同學(xué)進行調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)本次調(diào)查的樣本容量為________;統(tǒng)計圖中的________,________;
(2)通過計算補全條形統(tǒng)計圖;
(3)該校共有2500名學(xué)生,請你估計全校喜愛“葫蘆雕刻”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(-3,0)、點B(0,),直線與x軸、y軸分別交于點D、C,M是平面內(nèi)一動點,且∠AMB=60°,則MCD面積的最小值是 ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為上一動點(不與B,C重合),求證:PA=PB+PC.請你根據(jù)圖中所給的軸助線,給出作法并完成證明過程.
(2)類比遷移:如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值
(3)拓展延伸:如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB= AC,AB⊥AC,垂足為A,則OC的最小值為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com