閱讀下面的材料:
把一個分式寫成兩個分式的和叫做把這個分式表示成“部分分式”
[例]將分式數(shù)學(xué)公式表示成部分分式.
解:數(shù)學(xué)公式
將等式右邊通分,得:數(shù)學(xué)公式=數(shù)學(xué)公式,
依據(jù)題意得,數(shù)學(xué)公式解得數(shù)學(xué)公式
數(shù)學(xué)公式+數(shù)學(xué)公式
請你運用上面所學(xué)到的方法,解決下面的問題:
將分式數(shù)學(xué)公式表示成部分分式.

解:=+,
將等式右邊通分,得:=
依據(jù)題意得:,
解得:
=+
分析:根據(jù)題意首先可設(shè)=+,然后利用分式的加減運算,求+,繼而可得方程組:,解此方程組即可求得答案.
點評:此題考查了分式的加減運算法則.此題難度適中,屬于閱讀型題目.注意理解題意是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料:把形如ax2+bx+c的二次三項式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆運用,即a2±2ab+b2=(a±b)2
例如:x2-2x+4=(x-1)2+
 

x2-2x+4=(x-2)2+
 

x2-2x+4=(
1
2
x-2)2+
3
4
 

以上是x2-4x+4的三種不同形式的配方(即“余項”分別是常數(shù)、一次項、二次項--見橫線上的部分).根據(jù)閱讀材料解決以下問題:
(1)仿照上面的例子,寫出x2-4x+2三種不同形式的配方;
(2)將a2+ab+b2配方(至少寫出兩種形式);
(3)已知a2+b2+c2-ab-6b-6c+21=0,求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面的材料,再因式分解:
要把多項式am+an+bm+bn因式分解,可以先把它的前兩項分成一組,并提出a;把它的后兩項分成一組,并提出b,從而得至a(m+n)+b(m+n).這時,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),從而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).這種因式分解的方法叫做分組分解法.如果把一個多項式的項分組并提出公因式后,它們的另一個因式正好相同,那么這個多項式就可以利用分組分解法來因式分解了.
請用上面材料中提供的方法因式分解:
(1)ab-ac+bc-b2
(2)m2-mn+mx-nx;
(3)xy2-2xy+2y-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面的材料:把形如ax2+bx+c的二次三項式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆運用,即a2±2ab+b2=(a±b)2
例如:x2-2x+4=(x-1)2+______
x2-2x+4=(x-2)2+______
x2-2x+4=(數(shù)學(xué)公式x-2)2+數(shù)學(xué)公式______.
以上是x2-4x+4的三種不同形式的配方(即“余項”分別是常數(shù)、一次項、二次項--見橫線上的部分).根據(jù)閱讀材料解決以下問題:
(1)仿照上面的例子,寫出x2-4x+2三種不同形式的配方;
(2)將a2+ab+b2配方(至少寫出兩種形式);
(3)已知a2+b2+c2-ab-6b-6c+21=0,求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

先閱讀下面的材料,再分解因式:    
       要把多項式am+an+bm+bn 分解因式,可以先把它的前兩項分成一組,并提出a ;把它的后兩項分成一組,并提出b ,從而得到a (m+n )+b (m+n )。這時,由于a (m+n )+b (m+n ),又有公因式(m+n ),于是可提公因式(m+n ),從而得到(m+n )(a+b )。因此有am+an+bm+bn= (am+an )+ (bm+bn )=a (m+n )+b (m+n )= (m+n )(a+b )。
        這種因式分解的方法叫做分組分解法。如果把一個多項式的項分組并提出公因式后,它們的另一個因式正好相同,那么這個多項式就可以利用分組分解法來分解因式了。    
        請用上面材料中提供的方法分解因式:    
(1)a2-ab+ac-bc;    
(2)m2+5n-mn-5m。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面的材料,再分解因式:

    要把多項式am+an+bm+bn分解因式,可以先把它的前兩項分成一組,并提出a;把它的后兩項分成一組,并提出b,從而得到a(m+n)+b(m+n).這時,由于a(m+n)+b(m+n)又有公因式(m+n),于是可提公因式(m+n),從而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).

    這種因式分解的方法叫做分組分解法.如果把一個多項式的項分組并提出公因式后,它們的另一個因式正好相同,那么這個多項式就可以利用分組分解法來分解因式了.

    請用上面材料中提供的方法分解因式:

    (1)a2-ab+ac-bc;    (2)m2+5n-mn-5m.

查看答案和解析>>

同步練習(xí)冊答案