【題目】如圖所示,矩形ABCD中,AB=8,BC=6,P是線段BC上一點(P不與B重合),M是DB上一點,且BP=DM,設(shè)BP=x,△MBP的面積為y,則y與x之間的函數(shù)關(guān)系式為_____.
【答案】y=x2+4x(0<x≤6).
【解析】
根據(jù)勾股定理可得BD=10,因為DM=x,所以BM=10-x,過點M作ME⊥BC于點E,可得到△BME∽△BDC,然后根據(jù)相似三角形的性質(zhì)得到=,由此即可用x表示ME,最后根據(jù)三角形的面積公式即可確定函數(shù)關(guān)系式.
∵AB=8,BC=6,
∴CD=8,
∴BD=10,
∵DM=x,
∴BM=10-x,
如圖,
過點M作ME⊥BC于點E,
∴ME∥DC,
∴△BME∽△BDC,
∴=,
∴ME=8-x,
而S△MBP=×BP×ME,
∴y=x2+4x,P不與B重合,那么x>0,可與點C重合,那么x≤6.
故答案為:y=x2+4x(0<x≤6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線BD⊥AD,E為CD上一點,連接AE交BD于點F,G為AF的中點,連接DG.
(1)如圖1,若DG=DF=1,BF=3,求CD的長;
(2)如圖2,連接BE,且BE=AD,∠AEB=90°,M、N分別為DG,BD上的點,且DM=BN,H為AB的中點,連接HM、HN,求證:∠MHN=∠AFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條河的北岸有兩個目標(biāo)M、N,現(xiàn)在位于它的對岸設(shè)定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.
(1)求點M到AB的距離;(結(jié)果保留根號)
(2)在B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)
(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊△ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點D為邊CB延長線上任意一點時,在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣,1),點B是x軸正半軸上的一動點,以AB為邊作等邊△ABC,當(dāng)C點在第一象限內(nèi),且B(2,0)時,求C點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明從點A走到點D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABCD中,DH⊥AB于點H,CD的垂直平分線交CD于點E,交AB于點F,AB=6,DH=4,BF:FA=1:5.
(1)如圖2,作FG⊥AD于點G,交DH于點M,將△DGM沿DC方向平移,得到△CG′M′,連接M′B.
①求四邊形BHMM′的面積;
②直線EF上有一動點N,求△DNM周長的最小值.
(2)如圖3,延長CB交EF于點Q,過點Q作QK∥AB,過CD邊上的動點P作PK∥EF,并與QK交于點K,將△PKQ沿直線PQ翻折,使點K的對應(yīng)點K′恰好落在直線AB上,求線段CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時.
①若點P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com