【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=,BC=6,求切線BD的長.
【答案】(1)見解析;(2)3.
【解析】
試題分析:(1)如圖,連接OD,欲證明直線BD與⊙O相切,只需證明OD⊥BD即可;
(2)連接DE.利用圓周角定理和三角形中位線定理易求DE的長度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的長度;最后利用切割線定理來求切線BD的長度.
(1)證明:∵OA=OD,
∴∠A=∠ADO(等邊對(duì)等角).
又∵∠A+∠CDB=90°(已知),
∴∠ADO+∠CDB=90°(等量代換),
∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.
又∵OD是圓O的半徑.
∴BD是⊙O切線;
(2)解:連接DE,則∠ADE=90°(圓周角定理).
∵∠C=90°,
∴∠ADE=∠C,
∴DE∥BC,
又∵D是AC中點(diǎn),
∴DE是△ABC的中位線,
∴DE=BC=3,AE=BE.
∵AD:AE=,
在直角△ADE中,利用勾股定理求得AE=3,則AB=6.
∴BD2=ABBE=6×3=54,
∴BD=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的三條邊的長,當(dāng)時(shí),
(1)試判斷△ABC屬于哪一類三角形;
(2)若a=4,b=3,求△ABC的周長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A(2,3).
(1)求這個(gè)函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,某市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鎮(zhèn)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)、求飲用水和蔬菜各有多少件?
(2)、現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鎮(zhèn)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來;
(3)、在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度數(shù)為( )
A. 80°
B. 40°
C. 60°
D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),兩條直線可能的位置關(guān)系是( )
A. 平行 B. 相交 C. 平行或相交 D. 平行、相交或垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com