精英家教網 > 初中數學 > 題目詳情
(2006•遼寧)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度為(即tan∠PAB=),且O,A,B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結果保留根號形式)

【答案】分析:在圖中共有三個直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分別求出CO、CF、PE,然后根據三者之間的關系,列方程求解即可解決.
解答:解:作PE⊥OB于點E,PF⊥CO于點F,
在Rt△AOC中,AO=100,∠CAO=60°,
∴CO=AO•tan60°=100(米)
設PE=x米,
∵tan∠PAB==,
∴AE=2x.
在Rt△PCF中,
∠CPF=45°,CF=100-x,PF=OA+AE=100+2x,
∵PF=CF,
∴100+2x=100-x,
解得x=(米).
答:電視塔OC高為100米,點P的鉛直高度為(米).
點評:本題要求學生借助仰角關系構造直角三角形,并結合圖形利用三角函數解直角三角形.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年上海市虹口區(qū)中考數學一模試卷(解析版) 題型:解答題

(2006•遼寧)如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2006•遼寧)如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《一次函數》(07)(解析版) 題型:解答題

(2006•遼寧)如圖,已知A(-1,0),E(0,-),以點A為圓心,以AO長為半徑的圓交x軸于另一點B,過點B作BF∥AE交⊙A于點F,直線FE交x軸于點C.
(1)求證:直線FC是⊙A的切線;
(2)求點C的坐標及直線FC的解析式;
(3)有一個半徑與⊙A的半徑相等,且圓心在x軸上運動的⊙P.若⊙P與直線FC相交于M,N兩點,是否存在這樣的點P,使△PMN是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《一次函數》(07)(解析版) 題型:解答題

(2006•遼寧)如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現將紙片折疊,使頂點C落在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設點P為直線EF上的點,是否存在這樣的點P,使得以P,F,G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年遼寧省十一市中考數學試卷(大綱卷)(解析版) 題型:解答題

(2006•遼寧)如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

同步練習冊答案