【題目】如圖,過(guò)直線上點(diǎn)作 的垂線,三角尺的一條直角邊從與重合的位置開(kāi)始,繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)至與重合時(shí)停止,在旋轉(zhuǎn)過(guò)程中,設(shè)的度數(shù)為,作的平分線.
(1)當(dāng)在的內(nèi)部時(shí),的余角是___________;(填寫(xiě)所有符合條件的角)
(2)在旋轉(zhuǎn)過(guò)程中,若,求的值;
(3)在旋轉(zhuǎn)過(guò)程中,作的平分線的度數(shù)是否會(huì)隨著的變化而變化?若不變,直接寫(xiě)出的度數(shù);若變化,試用含有的式子表示的度數(shù).
【答案】(1);(2)或;(3)不變,.
【解析】
(1)根據(jù)余角定義即可解答;(2)根據(jù)平分可得,設(shè),可得∠BOF=4x,再分在右邊和左邊兩種情況,結(jié)合圖形列出方程解出x即可解答;(3)思路同(2)分兩種情況,再結(jié)合圖形和根據(jù)角平分線分的兩角相等、角的和差計(jì)算即可.
(1)當(dāng)在的內(nèi)部時(shí),由題意可知:∠BOE和∠COD都是直角,即 +=90°,+=90°,所以的余角是;
(2)解:∵平分 ,∴
設(shè),
∵,∴∠BOF=4x,
I.當(dāng)在右邊時(shí)(如原題圖)
∠EOF+∠BOF=∠BOE
即:
∴=18°,∠BOF=72°,
∴==∠BOE-∠EOF-∠DOF=90°-18°-18°=54° ,
II.當(dāng)在左邊時(shí):
∵∠BOF-∠EOF=∠BOE
∴
,即=30°,
∵=∠BOE+∠EOF+∠DOF
∴=
答:或;
(3)不變,,理由如下:
∵平分 ,∴= ,
∵OG平分,∴= ,
I.當(dāng)在右邊時(shí)
∵∠FOG=∠GOD-∠DOF,∠AOE=∠AOD-∠DOE=90°
∴
II.當(dāng)在左邊時(shí)
方法同(I)可得:
故不變,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問(wèn)題:
(1)求證:△BEF∽△DCB;
(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;
(3)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程由甲乙兩隊(duì)合做天完成,廠家需付甲乙兩隊(duì)共元;乙丙兩隊(duì)合做天完成,廠家需付乙丙兩隊(duì)共元;甲丙兩隊(duì)合做天完成全部工程的,廠家需付甲丙兩隊(duì)共元.
(1)求甲、乙、丙各隊(duì)單獨(dú)完成全部工程各需多少天?
(2)若要求不超過(guò)天完成全啊工程,問(wèn)可由哪隊(duì)單獨(dú)完成此項(xiàng)工程花錢(qián)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對(duì)應(yīng)值:
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:
①x=4對(duì)應(yīng)的函數(shù)值y約為_____________;
②該函數(shù)的一條性質(zhì):_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 點(diǎn)M從B點(diǎn)出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.若運(yùn)動(dòng)的時(shí)間為t,△MOD的面積為y,則y關(guān)于t的函數(shù)圖象大約是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科學(xué)考察隊(duì)的一輛越野車(chē)需要穿越650千米的沙漠,但這輛車(chē)每次裝滿汽油最多只能行駛600千米,隊(duì)長(zhǎng)想出一個(gè)方法,在沙漠中設(shè)一個(gè)儲(chǔ)油點(diǎn),越野車(chē)裝滿油從起點(diǎn)出發(fā),到儲(chǔ)油點(diǎn)時(shí)從車(chē)中取出部分油放進(jìn)儲(chǔ)油點(diǎn),然后返回出發(fā)點(diǎn),加滿油后再開(kāi)往,到儲(chǔ)油點(diǎn)時(shí)取出儲(chǔ)存的所有油放在車(chē)上,再到達(dá)終點(diǎn).用隊(duì)長(zhǎng)想出的方法,這輛越野車(chē)穿越這片沙漠的最大行程是____________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×q是n的完美分解.并規(guī)定:.
例如18可以分解成1×18,2×9或3×6,因?yàn)?/span>18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.
(1)F(13)= ,F(24)= ;
(2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為36,那么我們稱(chēng)這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;
(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com