【題目】如圖,是直角三角形,

1)請用尺規(guī)作圖法,作,使它與相切于點,與相交于點;保留作圖痕跡,不寫作法,請標(biāo)明字母)

2)在(1)的圖中,若,,求弧的長.(結(jié)果保留

【答案】1)見解析;(2

【解析】

1)過點OAB的垂線,垂足為點C,然后以O點為圓心,OC為半徑作圓即可;

2)先根據(jù)切線的性質(zhì)得∠ACO=90°,則利用互余可計算出∠COD=90°-A=60°,∠BOC=90°-COD=30°,再在RtBOC中利用∠BOC的余弦可計算出OC,然后根據(jù)弧長公式求解.

解:(1)如圖所示,即為所求作;

2相切于點

,

,

∵∠A=30°,∠AOB=90°

∴∠COD=90°-A=60°,∠BOC=90°-COD=30°,

OB=2,

OC=OB×cos30°==,

∴弧CD=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點上,以為半徑的經(jīng)過點,交于點,連接

(1)求證:的切線;

(2)延長到點,連接,交于點,連接,若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)

如圖均為等邊三角形,點在同一直線上,連接BE

填空:

的度數(shù)為______;

線段之間的數(shù)量關(guān)系為______.

拓展探究

如圖均為等腰直角三角形,,點在同一直線上,CMDE邊上的高,連接BE,請判斷的度數(shù)及線段之間的數(shù)量關(guān)系,并說明理由.

解決問題

如圖3,在正方形ABCD中,,若點P滿足,且,請直接寫出點ABP的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的邊軸上,點坐標(biāo)為,交于點,反比例函數(shù)的圖象經(jīng)過點.若將菱形向左平移個單位,使點落在該反比例函數(shù)圖象上,則的值為( ).

A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.

1)請用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來;

2)求抽出的2瓶牛奶中恰好抽到過期牛奶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,弦于點,過的延長線上一點的切線交的延長線于點,切點為點,連接于點

1)求證:是等腰三角形;

2)若,求證:;

3)在(2)的條件下,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某建設(shè)工程隊計劃每小時挖掘土石方方,現(xiàn)決定租用甲、乙兩種型號的挖掘機來完成這項工作,已知一臺甲型挖掘機與一臺乙型挖掘機每小時共挖土方,臺甲型挖掘機與臺乙型挖掘機恰好能完成每小時的挖掘量.

1)求甲、乙兩種型號的挖掘機每小時各挖土多少方?

2)若租用一臺甲型挖掘機每小時元,租用一臺乙型挖掘機每小時元,且每小時支付的總租金不超過元,又恰好完成每小時的挖掘量,請設(shè)計該工程隊的租用方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,的中點,于點延長線一點,且

求證: 的切線:

已知,求的長.

查看答案和解析>>

同步練習(xí)冊答案