【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點D為y軸上一點,其坐標(biāo)為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當(dāng)點P與點B重合時停止運動,運動時間為t秒.
(1)當(dāng)點P經(jīng)過點C時,求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點B的對應(yīng)點B′恰好落在AC邊上,求點P的坐標(biāo).
(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x+2;(2)①S=6或S=﹣2t+16;②點P的坐標(biāo)是(,10);(3)存在,滿足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,10﹣2).
【解析】
(1)設(shè)直線DP解析式為y=kx+b,將D與C坐標(biāo)代入求出k與b的值,即可確定出解析式;
(2)①當(dāng)P在AC段時,△ODP底OD與高為固定值,求出此時面積;當(dāng)P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關(guān)系式;
②當(dāng)D關(guān)于OP的對稱點落在x軸上時,直線OP為y=x,求出此時P坐標(biāo)即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.
解:(1)∵OA=6,OB=10,四邊形OACB為長方形,
∴C(6,10).
設(shè)此時直線DP解析式為y=kx+b,
把(0,2),C(6,10)分別代入,得
,
解得
則此時直線DP解析式為y=x+2;
(2)①當(dāng)點P在線段AC上時,OD=2,高為6,S=6;
當(dāng)點P在線段BC上時,OD=2,高為6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
②設(shè)P(m,10),則PB=PB′=m,如圖2,
∵OB′=OB=10,OA=6,
∴AB′==8,
∴B′C=10﹣8=2,
∵PC=6﹣m,
∴m2=22+(6﹣m)2,解得m=
則此時點P的坐標(biāo)是(,10);
(3)存在,理由為:
若△BDP為等腰三角形,分三種情況考慮:如圖3,
①當(dāng)BD=BP1=OB﹣OD=10﹣2=8,
在Rt△BCP1中,BP1=8,BC=6,
根據(jù)勾股定理得:CP1==2,
∴AP1=10﹣2,即P1(6,10﹣2);
②當(dāng)BP2=DP2時,此時P2(6,6);
③當(dāng)DB=DP3=8時,
在Rt△DEP3中,DE=6,
根據(jù)勾股定理得:P3E==2,
∴AP3=AE+EP3=2+2,即P3(6,2+2),
綜上,滿足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,10﹣2).
點睛】此題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,坐標(biāo)與圖形性質(zhì),等腰三角形的定義,勾股定理,利用了分類討論的思想,熟練掌握待定系數(shù)法是解本題第一問的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,△ABC, ∠ABC、∠ACB 的三等分線交于點 E、D, 若∠1=130°,∠2=110°,求∠A 的度數(shù)。
(2)如圖,△ABC,∠ABC 的三等分線分別與∠ACB 的平分線交于點 D,E 若∠1=110°,∠2=130°,求∠A 的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示,對于下列說法:①abc<0;②a﹣b+c<0;③3a+c<0;④當(dāng)﹣1<x<3時,y>0.其中正確的是______(把正確說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)先作出△ABC,再將△ABC向下平移5個單位長度后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得得到△A2B2C2,請畫出△A2B2C2;
(3)求出以O,A1,B為頂點的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,坐標(biāo)原點O是菱形ABOC的一個頂點,邊OB落在x軸的負半軸上,且cos∠BOC=,頂點C的坐標(biāo)為(a,4),反比例函數(shù)的圖象與菱形對角線AO交于D點,連接BD,當(dāng)BD⊥x軸時,k的值是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=3,點P、Q分別從A、B兩點出發(fā),按逆時針方向沿矩形的邊運動,點P的速度是每秒2個單位長度,點Q的速度是每秒1個單位長度,運動的時間為t秒,當(dāng)其中某一點到達點A時,運動停止,運動過程中,點P關(guān)于直線AQ的對稱點記為點M.
(1)點P點在線段AB上運動,點Q在線段BC上運動時,請用含t的式子表示出△APQ的面積S;
(2)當(dāng)點P在線段BC上運動,且△ABP∽△PCQ時,求t的值;
(3)若點Q在線段CD上,且以A、P、Q、M為頂點的四邊形是菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩家汽車銷售公司根據(jù)近幾年的銷售量分別制作了如圖所示的統(tǒng)計圖,從2014~2018年,這兩家公司中銷售量增長較快的是_____公司(填“甲”或“乙”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com