【題目】如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判斷直線CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為1,求圖中陰影部分的面積(結果保留π)
【答案】(1)直線CD與⊙O相切;(2)﹣.
【解析】
試題分析:(1)直線與圓的位置關系無非是相切或不相切,可連接OD,證OD是否與CD垂直即可.
(2)陰影部分的面積可由梯形OBCD和扇形OBD的面積差求得;扇形的半徑和圓心角已求得,那么關鍵是求出梯形上底CD的長,可通過證四邊形ABCD是平行四邊形,得出CD=AB,由此可求出CD的長,即可得解.
試題解析:(1)直線CD與⊙O相切.理由如下:
如圖,連接OD
∵OA=OD,∠DAB=45°,
∴∠ODA=45°
∴∠AOD=90°
∵CD∥AB
∴∠ODC=∠AOD=90°,即OD⊥CD
又∵點D在⊙O上,∴直線CD與⊙O相切;
(2)∵⊙O的半徑為1,AB是⊙O的直徑,
∴AB=2,
∵BC∥AD,CD∥AB
∴四邊形ABCD是平行四邊形
∴CD=AB=2
∴S梯形OBCD===;
∴圖中陰影部分的面積等于S梯形OBCD﹣S扇形OBD=﹣×π×12=﹣.
科目:初中數學 來源: 題型:
【題目】體育課上,某班兩名同學分別進行了5次短跑訓練,要判斷哪一名同學的成績比較穩(wěn)定,通常需要比較兩名同學成績的( )
A.平均數 B.方差 C.眾數 D.中位數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數為( )
A.40°
B.41°
C.42°
D.43°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數的關系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com