【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當(dāng)天進店購物的顧客,都能獲得一次抽獎的機會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎.
(1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結(jié)果表示出來;
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎活動,求能中獎的概率P.
【答案】
(1)解:列表得:
1 | 2 | 3 | 4 | |
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
(2)解:由列表可知,所有可能出現(xiàn)的結(jié)果一共有16種,這些結(jié)果出現(xiàn)的可能性相同,其中兩次所得數(shù)字之和為8、6、5的結(jié)果有8種,所以抽獎一次中獎的概率為:P= = .
答:抽獎一次能中獎的概率為
【解析】(1)事件分為兩個步驟,樹狀圖分為兩層,每層4種情況,列表時橫行4行,4列,因為是球放回,對應(yīng)關(guān)系是1對4;(2)中獎結(jié)果包括和為8的1種,和為6的3種,和為5的4種,共8種,除以機會均等的結(jié)果16種,概率為0.5.
【考點精析】通過靈活運用列表法與樹狀圖法,掌握當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y),若點Q的坐標(biāo)為(ax+y,x+ay),其中a為常數(shù),則稱點Q是點P的“a級關(guān)聯(lián)點”例如,點P(1,4)的“3級美聯(lián)點”為Q(3+4,1+3),即Q(7,13).
(1)已知點A(一2,6)的“級關(guān)聯(lián)點”是點,求點的坐標(biāo)。
(2)已知點M(m一1,2m)的“一3級關(guān)聯(lián)點”M’位于y軸上.求點M’的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時,四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的直角坐標(biāo)系中,畫出函數(shù)y=-2x+3的圖象,并結(jié)合圖象回答下列問題:
(1)y的值隨x值的增大而 (填“增大”或“減小”);
(2)圖象與x軸的交點坐標(biāo)是 ;圖象與y軸的交點坐標(biāo)是 ;
(3)當(dāng)x 時,y <0 ;
(4)直線y=-2x+3與兩坐標(biāo)軸所圍成的三角形的面積是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣ x2﹣ x+c與x軸相交于A、B兩點(B點在A點的左側(cè)),與y軸相交于C點,且AB=10.
(1)求這條拋物線的解析式;
(2)如圖2,D點在x軸上,且在A點的右側(cè),E點為拋物線上第二象限內(nèi)的點,連接ED交拋物線于第二象限內(nèi)的另外一點F,點E到y(tǒng)軸的距離與點F到y(tǒng)軸的距離之比為3:1,已知tan∠BDE= ,求點E的坐標(biāo);
(3)如圖3,在(2)的條件下,點G由B出發(fā),沿x軸負方向運動,連接EG,點H在線段EG上,連接DH,∠EDH=∠EGB,過點E作EK⊥DH,與拋物線相應(yīng)點E,若EK=EG,求點K的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=x+3交x軸于點A,交y軸于點B,點C是點A關(guān)于y軸對稱的點,過點C作y軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.
(1)求點A,B的坐標(biāo).
(2)如圖2,將△ACP沿著AP翻折,當(dāng)點C的對應(yīng)點C′落在直線AB上時,求點P的坐標(biāo).
(3)若直線OP與直線AD有交點,不妨設(shè)交點為Q(不與點D重合),連接CQ,是否存在點P,使得S△CPQ=2S△DPQ,若存在,請求出對應(yīng)的點Q坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線l1:y=3x﹣2k與直線l2:y=x+k交點P的縱坐標(biāo)為5,直線l1與直線l2與y軸分別交于A、B兩點.
(1)求出點P的橫坐標(biāo)及k的值;
(2)求△PAB的面積;
(3)點M為直線l1上的一個動點,當(dāng)△MAB面積與△PAB面積之比為2:3時,求此時的點M的坐標(biāo)【1】
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com