如圖是一個(gè)等腰直角三角板△ABC,AC=BC,∠ACB=90°,把三角板△ABC放在平面直角坐精英家教網(wǎng)標(biāo)平面內(nèi),點(diǎn)A(0,2)、C(1,0),函數(shù)y=
m
x
(x>0,m為常數(shù))的圖象經(jīng)過點(diǎn)B,過點(diǎn)B作x軸垂線,垂足為D.
(1)求證:△AOC≌△CDB;
(2)求函數(shù)y=
m
x
的解析式.
分析:(1)根據(jù)等腰直角三角形的性質(zhì)得到AC=BC,∠ACB=90°,再根據(jù)等角的余角相等得到∠OAC=∠BCD,即可證明Rt△AOC≌Rt△CDB;
(2)根據(jù)三角形全等的性質(zhì)得到BD=OC=1,CD=OA=2,則可確定B點(diǎn)坐標(biāo),把B點(diǎn)坐標(biāo)代入反比例解析式即可求出m.
解答:(1)證明:∵△ABC為等腰直角三角形,
∴AC=BC,∠ACB=90°,
∴∠ACO+∠BCD=90°,
而∠ACO+∠OAC=90°,
∴∠OAC=∠BCD,
∴△AOC≌△CDB;

(2)解:∵A(0,2)、C(1,0),
∴OA=2,OC=1,
又∵△AOC≌△CDB,
∴BD=OC=1,CD=OA=2,
∴B點(diǎn)坐標(biāo)為(3,1),
把B(3,1)代入y=
m
x
(x>0)得m=1×3=3,
∴函數(shù)y=
m
x
的解析式為:y=
3
x
點(diǎn)評:本題考查了點(diǎn)在反比例函數(shù)圖象上,點(diǎn)的橫縱坐標(biāo)滿足其解析式.也考查了等腰直角三角形的性質(zhì)以及三角形全等的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江)如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點(diǎn)A、B分別落在坐標(biāo)軸上.O為原點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,8).動(dòng)點(diǎn)M從點(diǎn)O出發(fā).沿OA向終點(diǎn)A以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿AB向終點(diǎn)B以每秒
53
個(gè)單位的速度運(yùn)動(dòng).當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)M、N運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t=3秒時(shí).直接寫出點(diǎn)N的坐標(biāo),并求出經(jīng)過O、A、N三點(diǎn)的拋物線的解析式;
(2)在此運(yùn)動(dòng)的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當(dāng)t為何值時(shí),△MNA是一個(gè)等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)等腰直角三角形和一個(gè)正方形如圖擺放,被分割成了①、②、③、④、⑤五個(gè)部分,如果①,②,③這三塊的面積比依次為1:4:35,那么④,⑤這兩塊的面積比是
25:36
25:36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等腰梯形ABCD中,AD∥BC,AB=CD,面積S=9,建立如圖所示的直角坐標(biāo)系,已知A(1,0)、B(0,3).
(1)求C、D兩點(diǎn)坐標(biāo);
(2)取點(diǎn)E(0,1),連接DE并延長交AB于F,求證:DF⊥AB;
(3)將梯形ABCD繞A點(diǎn)旋轉(zhuǎn)180°到AB′C′D′,求對稱軸平行于y軸,且經(jīng)過A、B′、C′三點(diǎn)的拋物線的解析式;
(4)是否存在這樣的直線,滿足以下條件:①平行于x軸,②與(3)中的拋物線有兩個(gè)交點(diǎn),且這兩交點(diǎn)和(3)中的拋物線的頂點(diǎn)恰是一個(gè)等邊三角形的三個(gè)頂點(diǎn)?若存在,求出這個(gè)等邊三角形的面積;精英家教網(wǎng)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測叢書九年級數(shù)學(xué)上 題型:044

七巧板是我國古代人民創(chuàng)造的一種益智游戲,是由一個(gè)正方形、一個(gè)平行四邊形和五個(gè)等腰直角三角形構(gòu)成(如圖),其中等腰直角三角形有三種不同尺寸.請你指出其中有哪幾組全等圖形.(用序號(hào)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖所示,這是美國第20任總統(tǒng)加菲爾德證明勾股定理時(shí)所采用的圖形,是用兩個(gè)全等的直角三角形和一個(gè)等腰直角三解形拼出一個(gè)梯形。借助這個(gè)圖形,你能用面積法來驗(yàn)證勾股定理嗎?

查看答案和解析>>

同步練習(xí)冊答案