(2008•哈爾濱)榮昌公司要將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.
(1)求租用一輛甲型汽車、一輛乙型汽車的費用分別是多少元?
(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設(shè)計出來,并求出最低的租車費用.
【答案】分析:(1)找出等量關(guān)系列出方程組再求解即可.本題的等量關(guān)系為“1輛甲型汽車和2輛乙型汽車共需費用2500元”和“租用2輛甲型汽車和1輛乙型汽車共需費用2450元”.
(2)得等量關(guān)系是“將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸同一種型號汽車每輛且同一種型號汽車每輛租車費用相同”.
解答:解:(1)設(shè)租用一輛甲型汽車的費用是x元,租用一輛乙型汽車的費用是y元.
由題意得(2分)
解得(1分)
答:租用一輛甲型汽車的費用是800元,租用一輛乙型汽車的費用是850元.

(2)設(shè)租用甲型汽車z輛,租用乙型汽車(6-z)輛.
由題意得(2分)
解得2≤z≤4(1分)
由題意知,z為整數(shù)∴z=2或z=3或z=4
∴共有3種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;方案二:租用甲型汽車3輛,租用乙型汽車3輛;
方案三:租用甲型汽車4輛,租用乙型汽車2輛.(1分)
方案一的費用是800×2+850×4=5000(元);
方案二的費用是800×3+850×3=4950(元);
方案三的費用是800×4+850×2=4900(元)
5000>4950>4900所以最低運費是4900元(1分)
答:共有三種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;
方案二:租用甲汽車3輛,租用乙型汽車3輛;方案三:租用甲型汽車4輛,租用乙型汽車2輛.最低運費是4900元.
點評:解題關(guān)鍵是要讀懂題目的意思,找出(1)合適的等量關(guān)系:1輛甲型汽車和2輛乙型汽車共需費用2500元”和“租用2輛甲型汽車和1輛乙型汽車共需費用2450元”.(2)“將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸同一種型號汽車每輛且同一種型號汽車每輛租車費用相同”.列出方程組,再求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設(shè)動點E運動的時間為t秒.
(1)求點D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設(shè)動點E運動的時間為t秒.
(1)求點D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點回歸+鞏固 專題11 一次函數(shù)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設(shè)動點E運動的時間為t秒.
(1)求點D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設(shè)動點E運動的時間為t秒.
(1)求點D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•哈爾濱)小李想用籬笆圍成一個周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x是多少時,矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案