9、如圖,在△ABC和△FED中,AD=FC,AB=FE,當(dāng)添加條件
BC=DE(或∠A=∠F)
時(shí),就可得△ABC≌△FED(只須填寫你認(rèn)為正確的條件).
分析:要使△ABC≌△EFD,已知AD=FC,AB=FE,所以AC=FD,若添加BC=ED,則可以利用SSS來判定其全等.同理,可添加∠A=∠F,利用SAS來判定其全等.
解答:解:∵AD=FC,AB=FE,
∴AC=FD
若添加BC=ED,則可以利用SSS來判定△ABC≌△EFD全等;
若添加∠A=∠F則可以利用SAS來判定△ABC≌△EFD全等.
故填空答案:BC=ED,∠A=∠F.
點(diǎn)評:本題考查三角形全等的判定方法;判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時(shí)注意:AAA、SSA不能判定兩個(gè)三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請說明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊答案