如圖,是某中學(xué)東操場(chǎng)旗桿兩側(cè)的花園示意圖,有少部分同學(xué)為了走近路在花園中踩出了一條“路”,請(qǐng)你幫他們算一算,僅僅為了少走_(dá)_____米,而踐踏了“無語的生命”.
由勾股定理得:
踩出的“路”的長=
12+22
=
5
m,
∴少走的路長=1+2-
5
=(3-
5
)m.
故答案為(3-
5
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列勾股數(shù)組:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一組勾股數(shù),則根據(jù)你發(fā)現(xiàn)的規(guī)律,a=______.(提示:5=
32+1
2
,13=
52+1
2
,…)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平靜的湖面上,有一枝荷花,高出水面1米.一陣風(fēng)吹過來,荷花被吹到一邊,花朵齊及水面.已知荷花移動(dòng)的水平距離為2米,問這里的水深多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將一根21cm的筷子,置于底面直徑為8cm,高15cm的圓柱形水杯中,則筷子露在杯子外面的最短長度是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是連江新華都超市一樓與二樓之間的手扶電梯示意圖.其中AB、CD分別表示一樓、二樓地面的水平線,小馬虎從點(diǎn)A到點(diǎn)C共走了12m,電梯上升的高度h為6m,經(jīng)小馬虎測(cè)量AB=2m,則BE=______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一只螞蟻從長寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所行的最短路線的長是(  )
A.(3
2
+8)cm
B.10cmC.14cmD.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個(gè)說法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中說法正確的結(jié)論有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:______.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,已知∠A=60°,AB=2,AC=3,試求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案