【題目】為弘揚(yáng)遵義紅色文化,傳承紅色文化精神,某校準(zhǔn)備組織學(xué)生開(kāi)展研學(xué)活動(dòng).經(jīng)了解,有A.遵義會(huì)議會(huì)址、B.茍壩會(huì)議會(huì)址、C.婁山關(guān)紅軍戰(zhàn)斗遺址、D.四渡赤水紀(jì)念館共四個(gè)可選擇的研學(xué)基地.現(xiàn)隨機(jī)抽取部分學(xué)生對(duì)基地的選擇進(jìn)行調(diào)查,每人必須且只能選擇一個(gè)基地.根據(jù)調(diào)查結(jié)果繪制如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)統(tǒng)計(jì)圖中____________;

2)若該校有1500名學(xué)生,請(qǐng)估計(jì)選擇基地的學(xué)生人數(shù);

3)某班在選擇基地的6名學(xué)生中有4名男同學(xué)和2名女同學(xué),需從中隨機(jī)選出2名同學(xué)擔(dān)任“小導(dǎo)游”,請(qǐng)用樹(shù)狀圖或列舉法求這2名同學(xué)恰好是一男一女的概率.

【答案】156,15;(2555;(3

【解析】

1)根據(jù)C基地的調(diào)查人數(shù)和所在的百分比即可求出調(diào)查總?cè)藬?shù),再乘調(diào)查A基地人數(shù)所占的百分比即可求出m,用調(diào)查D基地的人數(shù)除以調(diào)查總?cè)藬?shù)即可求出n;

2)先求出調(diào)查B基地人數(shù)所占的百分比,再乘1500即可;

3)根據(jù)題意,列出表格,然后利用概率公式求概率即可.

1)調(diào)查總?cè)藬?shù)為:40÷20%=200(人)

m=200×28%=56(人)

n%=30÷200×100%=15%

n=15.

故答案為:56;15

2(人)

答:選擇基地的學(xué)生人數(shù)為555人.

3)根據(jù)題意列表如下:

1

2

3

4

1

2

1

(男1,男2

(男1,男3

(男1,男4

(男1,女1

(男1,女2

2

(男2,男1

(男2,男3

(男2,男4

(男2,女1

(男2,女2

3

(男3,男1

(男3,男2

(男3,男span>4

(男3,女1

(男3,女2

4

(男4,男1

(男4,男2

(男4,男3

(男4,女1

(男4,女2

1

(女1,男1

(女1,男2

(女1,男3

(女1,男4

(女1,女2

2

(女2,男1

(女2,男2

(女2,男3

(女2,男4

(女2,女1

由上表可知,共有30種等可能的結(jié)果,其中“11女”的結(jié)果有16.

所以:11女).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)旅游業(yè)的發(fā)展,某市新建一座景觀橋.橋的拱肋ADB可視為拋物線的一部分,橋面AB可視為水平線段,橋面與拱肋用垂直于橋面的桿狀景觀燈連接,拱肋的跨度AB40米,橋拱的最大高度CD16(不考慮燈桿和拱肋的粗細(xì)),求與CD的距離為5米的景觀燈桿MN的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.

1)判斷:

①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是 ;

②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;

③神奇四邊形的中點(diǎn)四邊形是

2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接

①求證:四邊形是神奇四邊形;

②若,求的長(zhǎng);

3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,圖2是兩張形狀、大小完全相同的8×10方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A,B,C均位于格點(diǎn)處,請(qǐng)按要求畫(huà)出格點(diǎn)四邊形(四邊形各頂點(diǎn)都在格點(diǎn)上)

1)在圖1中畫(huà)出一個(gè)以點(diǎn)A,BC,P為頂點(diǎn)的格點(diǎn)四邊形,且為中心對(duì)稱圖形.

2)在圖2中畫(huà)出一個(gè)以點(diǎn)AB,C,Q為頂點(diǎn)的格點(diǎn)四邊形,AC平分∠BCQ,且有兩個(gè)內(nèi)角為90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在直角中,,點(diǎn)在邊上,且如果將沿所在的直線翻折,點(diǎn)恰好落在邊上的點(diǎn)處,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),以圓心,為半徑作⊙,交線段于點(diǎn)和點(diǎn),作交⊙于點(diǎn)交線段于點(diǎn)

1)求點(diǎn)到點(diǎn)和直線的距離

2)如果點(diǎn)平分劣弧,求此時(shí)線段的長(zhǎng)度

3)如果為等腰三角形,以為圓心的⊙與此時(shí)的⊙相切,求⊙的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在復(fù)習(xí)《反比例函數(shù)》一課時(shí),同桌的小明和小芳有一個(gè)間題觀點(diǎn)不一致,小明認(rèn)為如果兩次分別從l6六個(gè)整數(shù)中任取一個(gè)數(shù),第一個(gè)數(shù)作為點(diǎn)的橫坐標(biāo),第二個(gè)數(shù)作為點(diǎn)的縱坐標(biāo),則點(diǎn)在反比例函數(shù)的的圖象上的概率一定大于在反比例函數(shù)的圖象上的概率,而小芳卻認(rèn)為兩者的概率相同.你贊成誰(shuí)的觀點(diǎn)?

(1)試用列表或畫(huà)樹(shù)狀圖的方法列舉出所有點(diǎn)的情形;

(2)分別求出點(diǎn)在兩個(gè)反比例函數(shù)的圖象上的概率,并說(shuō)明誰(shuí)的觀點(diǎn)正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題是(

A.順次聯(lián)結(jié)任意四邊形四邊中點(diǎn)所得的四邊形是平行四邊形

B.順次聯(lián)結(jié)對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形

C.順次聯(lián)結(jié)對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形

D.順次聯(lián)結(jié)兩組鄰邊互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,以為邊在的另一側(cè)作,點(diǎn)為射線上任意一點(diǎn),在射線上截取,連接

1)如圖1,當(dāng)點(diǎn)落在線段的延長(zhǎng)線上時(shí),直接寫(xiě)出的度數(shù);

2)如圖2,當(dāng)點(diǎn)落在線段(不含邊界)上時(shí),于點(diǎn),請(qǐng)問(wèn)(1)中的結(jié)論是否仍成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;

3)在(2)的條件下,若,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PBx軸于點(diǎn)B,且AC=BC.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出kx+b<x的取值范圍;

(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案