【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).
【答案】(1);(2)P(1,0);(3).
【解析】(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:
,解得:,故拋物線的解析式:.
(2)當(dāng)P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);
(3)如圖所示:拋物線的對稱軸為:x==1,設(shè)M(1,m),已知A(﹣1,0)、C(0,﹣3),則:
=,==,=10;
①若MA=MC,則,得:=,解得:m=﹣1;
②若MA=AC,則,得:=10,得:m=;
③若MC=AC,則,得:=10,得:,;
當(dāng)m=﹣6時,M、A、C三點共線,構(gòu)不成三角形,不合題意,故舍去;
綜上可知,符合條件的M點,且坐標(biāo)為 M(1,)(1,)(1,﹣1)(1,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程組的基本思想是_________,也就是把二元一次方程組轉(zhuǎn)化為______________. 消元的方法有:_____________、_______________等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù);
(2)猜想∠EOF與∠AOB的數(shù)量關(guān)系;
(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊 上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com