如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,
給出下列命題:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的兩根分別為﹣3和1;
⑤8a+c>0.其中正確的命題是               
①③④⑤

試題分析:由拋物線的開口方向判斷a的符號;然后結合對稱軸判斷b的符號;根據(jù)拋物線的對稱軸、拋物線與x的一個交點可以推知與x的另一個交點的坐標;由二次函數(shù)圖象上點的坐標特征可以推知x=1滿足該拋物線的解析式.
解:①根據(jù)拋物線是開口方向向上可以判定a>0;
∵對稱軸x=﹣=﹣1,
∴b=2a>0;
∵該拋物線與y軸交于負半軸,
∴c<0,
∴abc<0;
故本選項正確;
②由①知,b=2a;
故本選項錯誤;
③∵該拋物線與x軸交于點(1,0),
∴x=1滿足該拋物線方程,
∴a+b+c=0;
故本選項正確;
④設該拋物線與x軸交于點(x,0)),
則由對稱軸x=﹣1,得=﹣1,
解得,x=﹣3;
∴ax2+bx+c=0的兩根分別為﹣3和1;
故本選項正確;
⑤根據(jù)圖示知,當x=﹣4時,y>0,
∴16a﹣4b+c>0,
由①知,b=2a,
∴8a+c>0;
故本選項正確;
綜合①②③④⑤,上述正確的①③④⑤;
故答案是:①③④⑤.

點評:本題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉90°后得到△COD.

(1)點C的坐標是     ,線段AD的長等于     ;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點G,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F(xiàn),P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,拋物線與x軸相交于O、B,頂點為A,連接OA.

(1)求點A的坐標和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線上,請說明理由;
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為   ,其中自變量x的取值范圍是   ;
(2)若當天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,直線y=x+4與坐標軸分別交于A、B兩點,過A、B兩點的拋物線為y=﹣x2+bx+c.點D為線段AB上一動點,過點D作CD⊥x軸于點C,交拋物線于點E.

(1)求拋物線的解析式.
(2)當DE=4時,求四邊形CAEB的面積.
(3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求此點D坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若拋物線y=x2+bx+c與x軸只有一個交點,且過點A(m,n),B(m+6,n),則n=     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當△MBC為等腰三角形時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為4,對稱中心為點P,點F為BC邊上一個動點,點E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關于直線AC成軸對稱,設它們的面積和為S1

(1)求證:∠APE=∠CFP;
(2)設四邊形CMPF的面積為S2,CF=x,
①求y關于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當圖中兩塊陰影部分圖形關于點P成中心對稱時,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

隨著“六一”臨近,兒童禮品開始熱銷,某廠每月固定生產甲、乙兩種禮品共100萬件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價22元,乙禮品每件售價18元,且都能全部售出。
(1)若某月銷售收入2000萬元,則該月甲、乙禮品的產量分別是多少?
(2)如果每月投入的總成本不超過1380萬元,應怎樣安排甲、乙禮品的產量,可使所獲得的利潤最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價每提高1元,銷量會減少4萬件,乙禮品售價不變,不管多少產量都能賣出。在(2)的條件下,為了獲得更大的利潤,該廠決定提高甲禮品的售價,并重新調整甲、乙禮品的生產數(shù)量,問:提高甲禮品的售價多少元時可獲得最大利潤,最大利潤為多少萬元?

查看答案和解析>>

同步練習冊答案