分析 由題意得出OD是△ABC內(nèi)切圓的半徑,求出BD=DC=$\sqrt{3}$,求出∠OBD=$\frac{1}{2}$∠ABC=30°,在Rt△OBD中,求出OD=BD•tan30°=1即可.
解答 解:如圖所示
設(shè)O為等邊△ABC的內(nèi)心,D為切點(diǎn),連接OB,OD;
則AD⊥BC,BD=DC,OD是△ABC內(nèi)切圓的半徑,
∵BC=2$\sqrt{3}$,
∴BD=DC=3,
∵O為等邊△ABC內(nèi)切圓的圓心,
∴∠OBD=$\frac{1}{2}$∠ABC=$\frac{1}{2}$×60°=30°,
在Rt△OBD中,OD=BD•tan30°=$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=1(cm);
∴正三角形的內(nèi)切圓半徑是1cm,
故答案為:1.
點(diǎn)評(píng) 本題考查的是三角形的內(nèi)切圓與內(nèi)心、正三角形的性質(zhì);根據(jù)題意畫(huà)出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 點(diǎn)M | B. | 點(diǎn)P | C. | 點(diǎn)Q | D. | 點(diǎn)N |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com