(2012•順義區(qū)一模)如圖,菱形ABCD中,AB=2,∠C=60°,我們把菱形ABCD的對稱中心稱作菱形的中心.菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點(diǎn)旋轉(zhuǎn)60°叫一次操作,則經(jīng)過1次這樣的操作菱形中心O所經(jīng)過的路徑長為
3
3
π
3
3
π
;經(jīng)過18次這樣的操作菱形中心O所經(jīng)過的路徑總長為
(4
3
+2)π
(4
3
+2)π
;經(jīng)過3n(n為正整數(shù))次這樣的操作菱形中心O所經(jīng)過的路徑總長為
2
3
+1
3
2
3
+1
3
.(結(jié)果都保留π)
分析:從圖中可以看出,第一次旋轉(zhuǎn)是以點(diǎn)A為圓心,那么菱形中心旋轉(zhuǎn)的半徑就是OA,解直角三角形可求出OA的長,圓心角是60度.第二次還是以點(diǎn)A為圓心,那么菱形中心旋轉(zhuǎn)的半徑就是OA,圓心角是60度.第三次就是以點(diǎn)B為旋轉(zhuǎn)中心,OB為半徑,旋轉(zhuǎn)的圓心角為60度.旋轉(zhuǎn)到此菱形就又回到了原圖.故這樣旋轉(zhuǎn)18次,就是這樣的6個弧長的總長,依此計算即可得,進(jìn)而得出經(jīng)過3n(n為正整數(shù))次這樣的操作菱形中心O所經(jīng)過的路徑總長.
解答:解:∵菱形ABCD中,AB=2,∠C=60°,
∴△ABD是等邊三角形,
BO=DO=1,
AO=
AD2-DO2
=
3
,
第一次旋轉(zhuǎn)的弧長=
60π×
3
180
=
3
3
π,
∵第一、二次旋轉(zhuǎn)的弧長和=
60π×
3
180
+
60π×
3
180
=
3
3
π+
3
3
π=
2
3
3
π,
第三次旋轉(zhuǎn)的弧長為:
60π×1
180
=
π
3

∵18÷3=6,
故中心O所經(jīng)過的路徑總長=6(
2
3
3
π+
π
3
)=(4
3
+2)π,
故經(jīng)過3n(n為正整數(shù))次這樣的操作菱形中心O所經(jīng)過的路徑總長為:n×(
2
3
3
π+
π
3
)=
2
3
+1
3
nπ.
故答案為:
3
3
π,(4
3
+2)π,
2
3
+1
3
nπ.
點(diǎn)評:本題主要考查了弧長的計算公式以及菱形的性質(zhì),根據(jù)已知得出菱形每轉(zhuǎn)動3次一循環(huán)進(jìn)而得出經(jīng)過路徑是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB邊上一個動點(diǎn)(不與點(diǎn)A、B重合),E是BC邊上一點(diǎn),且∠CDE=30°.設(shè)AD=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)分解因式:5x3-10x2y+5xy2=
5x(x-y)2
5x(x-y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)下列運(yùn)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)問題:如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,點(diǎn)D是射線CB上任意一點(diǎn),△ADE是等邊三角形,且點(diǎn)D在∠ACB的內(nèi)部,連接BE.探究線段BE與DE之間的數(shù)量關(guān)系.請你完成下列探究過程:先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.
(1)當(dāng)點(diǎn)D與點(diǎn)C重合時(如圖2),請你補(bǔ)全圖形.由∠BAC的度數(shù)為
60°
60°
,點(diǎn)E落在
AB的中點(diǎn)處
AB的中點(diǎn)處
,容易得出BE與DE之間的數(shù)量關(guān)系為
BE=DE
BE=DE
;
(2)當(dāng)點(diǎn)D在如圖3的位置時,請你畫出圖形,研究線段BE與DE之間的數(shù)量關(guān)系是否與(1)中的結(jié)論相同,寫出你的猜想并加以證明.

查看答案和解析>>

同步練習(xí)冊答案