分析 (1)根據(jù)同弧所對(duì)的圓周等于圓心角的一半,結(jié)合等腰三角形的性質(zhì),可求∠OBQ=90°;
(2)①設(shè)出半徑,表示出OQ,運(yùn)用三角函數(shù)建立方程即可求解;
②過點(diǎn)C作CH⊥EF,垂足為H,交AB于點(diǎn)K,推理出“EF隨著HK的增大而增大,當(dāng)HK取最大值時(shí),EF取最大值”即可求解.
解答 解:如圖1,
(1)連接OB,
∵∠C=60°,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵BQ=AB,
∴∠Q=∠OAB=30°,
∴∠ABQ=120°,
∴∠OBQ=90°,
∴BQ是⊙O的切線;
(2)①設(shè)圓的半徑為r,則OQ=6-r,
由(1)知,∠Q=30°,∠OBQ=90°,
∴$\frac{OB}{OQ}$=sin30°=$\frac{1}{2}$
∴$\frac{r}{6-r}$=$\frac{1}{2}$,
解得:r=2;
②如圖2,
當(dāng)OP垂直平分AB時(shí),線段EF取得最大值;
理由如下:
由(1)知,AQ=6,∠Q=∠BAQ=30°,
可求AB=$2\sqrt{3}$,
過點(diǎn)C作CH⊥EF,垂足為H,交AB于點(diǎn)K,
∵EF∥AB,
∴CK⊥AB,△ABC∽△EFC,
∴$\frac{AB}{EF}=\frac{CK}{CH}$,
∴EF=$\frac{AB•CH}{CK}$=$2\sqrt{3}$×$\frac{CK+HK}{CK}$=$2\sqrt{3}$+$2\sqrt{3}$•$\frac{HK}{CK}$,
易知:CK是定值,所以,EF隨著HK的增大而增大,
當(dāng)HK取最大值時(shí),EF取最大值,
∴當(dāng)點(diǎn)P為劣弧AB的中點(diǎn)時(shí),HK最大,此時(shí)OP垂直平分AB.
點(diǎn)評(píng) 此題主要考查圓的綜合問題,會(huì)證明圓的切線,會(huì)運(yùn)用方程思想解決問題,熟悉等腰三角形的性質(zhì)并靈活運(yùn)用,會(huì)結(jié)合相似三角形的性質(zhì)進(jìn)行推理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com