【題目】如圖,在△OAB中,O為坐標(biāo)原點(diǎn),橫、縱軸的單位長(zhǎng)度相同,A、B的坐標(biāo)分別為(8,6),(16,0),點(diǎn)P沿OA邊從點(diǎn)O開(kāi)始向終點(diǎn)A運(yùn)動(dòng),速度每秒1個(gè)單位,點(diǎn)Q沿BO邊從B點(diǎn)開(kāi)始向終點(diǎn)O運(yùn)動(dòng),速度每秒2個(gè)單位,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。求:
(1)幾秒時(shí)PQ∥AB.
(2)設(shè)△OPQ的面積為y,求y與t的函數(shù)關(guān)系式.
(3)△OPQ與△OAB能否相似?若能,求出點(diǎn)P的坐標(biāo),若不能,試說(shuō)明理由.
【答案】(1);(2)
【解析】(1),,則:,得:t=40/9
(2) 過(guò)P作PC⊥OB, 垂足為C, 過(guò)A作AD⊥OB, 垂足為D
(3)能相似。PQ∥AB, △OPQ∽△OAB
∵t=∴OP=,
∵其中AD=6,OA=10,OD=8 ∴OC=,PC=,
∴P點(diǎn)坐標(biāo)是(, ).
(1)由兩點(diǎn)間的距離公式求得AO=10,然后根據(jù)平行線PQ∥AB分線段成比例知,據(jù)此列出關(guān)于t的方程,并解方程;
(2)過(guò)P作PC⊥OB,垂足為C,過(guò)A作AD⊥OB,垂足為D.構(gòu)造平行線PC∥AQ,根據(jù)平行線分線段成比例及三角形的面積公式求得關(guān)于y與t的函數(shù)關(guān)系式;
(3)當(dāng)PQ∥AB時(shí),得到兩對(duì)同位角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似可得△OPQ∽△OAB.然后根據(jù)相似三角形的性質(zhì):對(duì)應(yīng)線段成比例求得點(diǎn)P的坐標(biāo)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥GD,∠1=∠2,∠BAC=65°.將求∠AGD的過(guò)程填寫完整.
∵EF∥CD,
∴∠2= ( ),
∵∠1=∠2,
∴∠1=∠3,
∴AB∥ ( ),
∴∠BAC+ =180°( ),
∵∠BAC=65°,
∴∠AGD= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)E.
(1)求證:∠EDB=∠B.
(2)若sinB=,AB=10,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店能過(guò)調(diào)低價(jià)格的方式促銷n個(gè)不同的玩具,調(diào)整后的單價(jià)y(元)與調(diào)整前的單價(jià)x(元)滿足一次函數(shù)關(guān)系,如下表:
第1個(gè) | 第2個(gè) | 第3個(gè) | 第4個(gè) | … | 第n個(gè) | |
調(diào)整前單價(jià)x(元) | x1 | x2=6 | x3=72 | x4 | … | xn |
調(diào)整后單價(jià)x(元) | y1 | y2=4 | y3=59 | y4 | … | yn |
已知這n個(gè)玩具調(diào)整后的單價(jià)都大于2元.
(1)求y與x的函數(shù)關(guān)系式,并確定x的取值范圍;
(2)某個(gè)玩具調(diào)整前單價(jià)是108元,顧客購(gòu)買這個(gè)玩具省了多少錢?
(3)這n個(gè)玩具調(diào)整前、后的平均單價(jià)分別為,,猜想與的關(guān)系式,并寫出推導(dǎo)出過(guò).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( 。
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)M、P、N、Q依次是正方形ABCD的邊AB、BC、CD、DA上一點(diǎn)(不與正方形的頂點(diǎn)重合),給出如下結(jié)論:
①M(fèi)N⊥PQ,則MN=PQ;
②MN=PQ,則MN⊥PQ;
③△AMQ≌△CNP,則△BMP≌△DNQ;
④△AMQ∽△CNP,則△BMP∽△DNQ
其中所有正確的結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲(chóng)在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去看望B、C、D處的其它甲蟲(chóng),規(guī)定:向上向右走均為正,向下向左走均為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1,﹣2);
(2)若這只甲蟲(chóng)從A處去甲蟲(chóng)P處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出P的位置;
(3)若這只甲蟲(chóng)的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的路程.
(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com