【題目】如圖,拋物線yax2+bx+ca≠0)與x軸交于點(diǎn)A1,0)和B,與y軸的正半軸交于點(diǎn)C,下列結(jié)論:①abc0;②4a2b+c0;③2ab0,其中正確的個(gè)數(shù)為(  )

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

【答案】C

【解析】

由拋物線的開(kāi)口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,進(jìn)而判斷①;根據(jù)x=2時(shí),y0可判斷②;根據(jù)對(duì)稱軸x=1求出2ab的關(guān)系,進(jìn)而判斷③.

①由拋物線開(kāi)口向下知a0,

∵對(duì)稱軸位于y軸的左側(cè),

a、b同號(hào),即ab0

∵拋物線與y軸交于正半軸,

c0

abc0;

故①正確;

②如圖,當(dāng)x=2時(shí),y0,則4a2b+c0,

故②正確;

③∵對(duì)稱軸為x=>﹣1,

2ab,即2ab0,

故③錯(cuò)誤;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖①,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA2,PB=,PC1,求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△PPB是等邊三角形,而△PPA又是直角三角形(由勾股定理的逆定理可證),可得∠APB °,所以∠BPC=∠APB °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長(zhǎng)為 ,問(wèn)題得到解決.

1)根據(jù)李明同學(xué)的思路填空:∠APB °,∠BPC=∠APB °,等邊三角形ABC的邊長(zhǎng)為

2)探究并解決下列問(wèn)題:如圖③,在正方形ABCD內(nèi)有一點(diǎn)P,且PA,PBPC1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBCD,BEACE,MAB邊的中點(diǎn),連結(jié)ME、MD、ED,設(shè)AB=10,∠DBE=30°,則EDM的面積為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A(﹣10)、B兩點(diǎn),與y軸交于點(diǎn)C 0,3),點(diǎn)P在該拋物線的對(duì)稱軸上,且縱坐標(biāo)為2

1)求拋物線的表達(dá)式以及點(diǎn)P的坐標(biāo);

2)當(dāng)三角形中一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的兩倍時(shí),我們稱α為此三角形的“特征角”.

當(dāng)D在射線AP上,如果∠DAB為△ABD的特征角,求點(diǎn)D的坐標(biāo);

點(diǎn)E為第一象限內(nèi)拋物線上一點(diǎn),點(diǎn)Fx軸上,CEEF,如果∠CEF為△ECF的特征角,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南省政府為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計(jì)劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長(zhǎng),已知墻高AB3米,墻面與保溫板所成的角∠BAC150°,在點(diǎn)D處測(cè)得A點(diǎn)、C點(diǎn)的仰角分別為9°,156°,如圖2所示求保溫板AC的長(zhǎng)是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99tan9°≈016,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE

1)當(dāng)時(shí),

①若,求的度數(shù);

②求證;

2)當(dāng),時(shí),

①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);

②以D為端點(diǎn)過(guò)P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為_(kāi)_______.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點(diǎn)在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動(dòng),其中是過(guò)程,轉(zhuǎn)是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運(yùn)用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問(wèn)題的關(guān)。

實(shí)踐操作:如圖1,在RtABC中,∠B90°BC2AB12,點(diǎn)D,E分別是邊BCAC的中點(diǎn),連接DE,將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α

問(wèn)題解決:(1)①當(dāng)α時(shí),   ;②當(dāng)α180°時(shí),   

2)試判斷:當(dāng)0°≤a360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.

問(wèn)題再探:(3)當(dāng)△EDC旋轉(zhuǎn)至A,D,E三點(diǎn)共線時(shí),求得線段BD的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,□ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E、F、GH分別是OA、OB、OCOD的中點(diǎn),那么□ABCD與四邊形EFGH是否是位似圖形?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案