觀察下列等式:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4…這些等式反映了正整數(shù)的某種規(guī)律.
(1)設(shè)n為正整數(shù),試用含m的式子,表示你發(fā)現(xiàn)的規(guī)律;
(2)驗證你發(fā)現(xiàn)規(guī)律的正確性,并用文字歸納出這個規(guī)律.
分析:(1)(2n+1)2-(2n-1)2=8n;
(2)(2n+1)2-(2n-1)2=4n2+4n+1-(4n2-4n+1),再合并即可,兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).
解答:解:(1)(2n+1)2-(2n-1)2=8n;

(2)(2n+1)2-(2n-1)2
=4n2+4n+1-(4n2-4n+1)
=8n;
即(2n+1)2-(2n-1)2=8n,
故兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).
點評:本題考查了平方差公式的應(yīng)用,主要考查學(xué)生的理解能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、觀察下列等式:
32+42=52
102+112+122=132+142
212+222+232+242=252+262+272
那么下一個等式的表達式是:
362+372+382+392+402=412+422+432+442

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式,
32+
2
7
=2
3
2
7
,
33+
3
26
=3
34+
4
63
,
34+
4
63
=4
3
4
63
,請你寫出含有n(n>2的自然數(shù))的等式表示上述各式規(guī)律的一般化公式:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
32-12=4×2
42-22=4×3
52-32=4×4

(1)請寫出第8個等式.
(2)你發(fā)現(xiàn)有什么規(guī)律?請用含有n(n≥1的整數(shù))的等式表示你發(fā)現(xiàn)的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式:
32-12=8=8×1
52-32=16=8×2
72-52=24=8×3
92-72=32=8×4

(1)若a2-b2=8×11,則a=
23
23
,b=
21
21

(2)根據(jù)上述規(guī)律,第n個等式是
(2n+1)2-(2n-1)2=8n
(2n+1)2-(2n-1)2=8n

查看答案和解析>>

同步練習(xí)冊答案