精英家教網 > 初中數學 > 題目詳情
若矩形的面積為6,則矩形的長y關于寬x(x>0)的函數關系式為    
【答案】分析:根據等量關系“矩形的長=矩形面積÷寬”即可列出關系式.
解答:解:由題意得:矩形的長y關于寬x(x>0)的函數關系式為:y=
故本題答案為:y=
點評:本題考查了反比例函數在實際生活中的應用,找出等量關系是解決此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

若矩形的面積為6,則矩形的長y關于寬x(x>0)的函數關系式為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•達州)【問題背景】
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設矩形的一邊長為x,面積為s,則s與x的函數關系式為:s=-x2+
1
2
x(x
>0),利用函數的圖象或通過配方均可求得該函數的最大值.
【提出新問題】
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌伲
【分析問題】
若設該矩形的一邊長為x,周長為y,則y與x的函數關系式為:y=2(x+
1
x
)
(x>0),問題就轉化為研究該函數的最大(小)值了.
【解決問題】
借鑒我們已有的研究函數的經驗,探索函數y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)實踐操作:填寫下表,并用描點法畫出函數y=2(x+
1
x
)
(x>0)的圖象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)觀察猜想:觀察該函數的圖象,猜想當x=
1
1
時,函數y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數s=-x2+
1
2
x(x
>0)的最大值,請你嘗試通過配方求函數y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,鄰邊不等的矩形花圃ABCD,它的一邊AD利用已有的圍墻,另外三邊所圍的柵欄的總長度是12m,若矩形的面積為16m2,則AB的長度是
2或4
2或4
m(可利用的圍墻長度超過12m).

查看答案和解析>>

科目:初中數學 來源: 題型:

問題背景:
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設矩形的一邊長為x,面積為s,則s與x的函數關系式為:s=-x2+
1
2
x
(x>0),利用函數的圖象或通過配方均可求得該函數的最大值.
提出新問題:
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
分析問題:
若設該矩形的一邊長為x,周長為y,則y與x的函數關系式為:y=2(x+
1
x
)
(x>0),問題就轉化為研究該函數的最大(小)值了.
解決問題:
借鑒我們已有的研究函數的經驗,探索函數y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)實踐操作:填寫下表,并用描點法畫出函數y=2(x+
1
x
)
(x>0)的圖象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)觀察猜想:觀察該函數的圖象,猜想當x=
1
1
時,函數y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數s=-x2+
1
2
x
(x>0)的最大值,請你嘗試通過配方求函數y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形花圃ABCD,它的一邊AD利用已有的圍墻,另外三邊所圍的柵欄的總長度是6m.若矩形的面積為
5
2
m2,則AB的長度是
5
2
5
2
m(可利用的圍墻長度不超過3m).

查看答案和解析>>

同步練習冊答案