已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A、B兩點.

(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

考點:

反比例函數(shù)與一次函數(shù)的交點問題..

專題:

代數(shù)綜合題;數(shù)形結合.

分析:

(1)利用已知求出反比例函數(shù)的解析式,再利用兩函數(shù)交點求出一次函數(shù)解析式;

(2)利用函數(shù)圖象求出分別得出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

解答:

解:(1)據(jù)題意,反比例函數(shù)的圖象經(jīng)過點A(﹣2,1)

∴有m=xy=﹣2

∴反比例函數(shù)解析式為y=﹣,

又反比例函數(shù)的圖象經(jīng)過點B(1,n)

∴n=﹣2,

∴B(1,﹣2)

將A、B兩點代入y=kx+b有,

解得,

∴一次函數(shù)的解析式為y=﹣x﹣1,

(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍為:

x取相同值,一次函數(shù)圖象在反比例函數(shù)上方即一次函數(shù)大于反比例函數(shù),

∴x<﹣2或0<x<1,

點評:

此題主要考查了待定系數(shù)法求反比例函數(shù)解析式以及待定系數(shù)法求一次函數(shù)解析式,利用圖象判定函數(shù)的大小關系是中學的難點同學們應重點掌握.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
的圖象相交于A、B兩點.
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,一次函數(shù)y=ax+b圖象經(jīng)過點(1,2)、點(-1,6).求:
(1)這個一次函數(shù)的解析式;
(2)一次函數(shù)圖象與兩坐標軸圍成的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,一次函數(shù)的圖象經(jīng)過第一,二,三象限,且與反比例函數(shù)的圖象交于A,B兩點,與y軸交于點C,OB=
10
,tan∠DOB=
1
3

(1)求反比例函數(shù)的解析式;
(2)設點A的橫坐標為m,△ABO的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當△OCD的面積等于
S
2
,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等精英家教網(wǎng)于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖:一次函數(shù)y=2x與反比例函數(shù)y=
2
x
相交于A、C 兩點,過這兩點分別作AB⊥y軸,CD⊥y軸,垂足分別為B、D,連接BC和AD,則四邊形ABCD的面積是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
mx
的圖象交于A(-2,1),精英家教網(wǎng)B(1,n)兩點.
(1)求上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求△AOB的面積;
(3)直接寫出當x取何值時,y1>y2?

查看答案和解析>>

同步練習冊答案