【題目】如圖,在ABC中,BAC=90°,AB=AC,點(diǎn)D是AB的中點(diǎn),連接CD,過(guò)B作BECD交CD的延長(zhǎng)線于點(diǎn)E,連接AE,過(guò)A作AFAE交CD于點(diǎn)F.

(1)求證:AE=AF;

(2)求證:CD=2BE+DE.

【答案】(1)、證明過(guò)程見解析;(2)、證明過(guò)程見解析

【解析】

試題分析:(1)、通過(guò)證AEB≌△AFC(SAS),得到AE=AF;(2)、如圖,過(guò)點(diǎn)A作AGEC,垂足為G,通過(guò)證BED≌△AGD(AAS),得到ED=GD,BE=AG,易證CF=BE=AG=GF.因?yàn)镃D=DG+GF+FC,所以CD=DE+BE+BE,故CD=2BE+DE.

試題解析:(1)、如圖,∵∠BAC=90°,AFAE, ∴∠EAB+BAF=BAF+FAC=90°,

∴∠EAB=FAC, BECD, ∴∠BEC=90° ∴∠EBD+EDB=ADC+ACD=90°,

∵∠EDB=ADC, ∴∠EBA=ACF, AEB與AFC中,,

∴△AEB≌△AFC(ASA), AE=AF;

(2)、如圖,過(guò)點(diǎn)A作AGEC,垂足為G. AGEC,BECE, ∴∠BED=AGD=90°,

點(diǎn)D是AB的中點(diǎn), BD=AD. BED與AGD中, ∴△BED≌△AGD(AAS), ED=GD,BE=AG, AE=AF ∴∠AEF=AFE=45° ∴∠FAG=45° ∴∠GAF=GFA, GA=GF, CF=BE=AG=GF, CD=DG+GF+FC, CD=DE+BE+BE, CD=2BE+DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】微電子技術(shù)的不斷進(jìn)步,使半導(dǎo)體材料的精細(xì)加工尺寸大幅度縮。撤N電子元件的面積大約為0.000000 7平方毫米,用科學(xué)記數(shù)法表示為平方毫米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果代數(shù)式x﹣4y的值為3,那么代數(shù)式2x﹣8y﹣1的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城街路上行駛速度不得超過(guò)70km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀A處的正前方30m的C處,過(guò)了2s后,測(cè)得小汽車與車速檢測(cè)儀間距離為50m,這輛小汽車超速了嗎?(參考數(shù)據(jù)轉(zhuǎn)換:1m/s=3.6km/h)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:14a2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若∠A:∠B:∠C=234,則∠A、∠B、∠C的外角的比是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與x軸交于A60)、B,0)兩點(diǎn),與y軸交于點(diǎn)C,過(guò)拋物線上點(diǎn)M1,3)作MNx軸于點(diǎn)N,連接OM

1)求此拋物線的解析式;

2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0t5)到△OMN′的位置,MN′、MO′與直線AC分別交于點(diǎn)E、F

①當(dāng)點(diǎn)FMO′的中點(diǎn)時(shí),求t的值;

②如圖2,若直線MN′與拋物線相交于點(diǎn)G,過(guò)點(diǎn)GGHMO′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1和2,在△ABC中,AB=13,BC=14,BH=5.

探究:如圖1,AH⊥BC于點(diǎn)H,則AH= ,AC= ,△ABC的面積 ;

拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A,C重合),分別過(guò)點(diǎn)A.C作直線BD的垂線,垂足為E,F(xiàn),設(shè)BD=x,AE=m,CF=n(當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),我們認(rèn)為

(1)用含x,m,n的代數(shù)式表示;

(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;

(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,直接寫出這樣的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(ab)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )

A. (a+b)2=a2+2ab+b2 B. (a﹣b)2=a2-2ab+b2

C. a+b)(a﹣b= a2﹣b2 D. (a+2b)(a﹣b)=a2+ab﹣2b2

查看答案和解析>>

同步練習(xí)冊(cè)答案