8.如圖,在△AEC中,點(diǎn)D和點(diǎn)F分別是AC和AE上的兩點(diǎn),連接DF,交CE的延長(zhǎng)線于點(diǎn)B,若∠A=25°,∠B=45°,∠C=36°,則∠DFE=( 。
A.103°B.104°C.105°D.106°

分析 根據(jù)三角形的外角的性質(zhì)求出∠FEB的度數(shù),再根據(jù)三角形外角的性質(zhì)計(jì)算即可.

解答 解:∵∠FEB是△AEC的一個(gè)外角,
∴∠FEB=∠A+∠C=61°,
∵∠DFE是△BFE的一個(gè)外角,
∴∠DFE=∠B+∠FEB=106°,
故選:D.

點(diǎn)評(píng) 本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.方程x(x-2)+x=0的解是( 。
A.x1=0,x2=1B.x1=0,x2=-1C.x1=0,x2=3D.x1=-1,x2=-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.約分:
(1)$\frac{{x}^{5}}{8{x}^{2}}$=$\frac{{x}^{3}}{8}$
(2)$\frac{7{m}^{2}n}{-35m{n}^{2}}$=$\frac{m}{-5n}$,
(3)$\frac{(a-b)^{2}}{(b-a)^{2}}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,AB是⊙O的直徑,弦CD⊥AB,連接AC,∠CAB=22.5°,CD=2cm,則⊙O的半徑為$\sqrt{2}$cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖,坐標(biāo)平面上,△ABC≌△DEF全等,其中A、B、C的對(duì)應(yīng)頂點(diǎn)分別為D、E、F,且AB=BC,若A、B、C的坐標(biāo)分別為(-3,1)、(-6,-3)、(-1,-3),D、E兩點(diǎn)在y軸上,則F點(diǎn)到y(tǒng)軸的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,拋物線y=ax2+2x+c與x軸交于A,B兩點(diǎn),它的對(duì)稱軸與x軸交于點(diǎn)N,過頂點(diǎn)M作ME⊥y軸于點(diǎn)E,連接BE交MN于點(diǎn)F,已知點(diǎn)A的坐標(biāo)為(-1,0),B的坐標(biāo)為(3,0).
(1)求該拋物線的解析式及頂點(diǎn)M的坐標(biāo);
(2)直接寫出△EMF與△BNF的面積之比以及點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知點(diǎn)(1,3)在函數(shù)y=$\frac{k}{x}$的圖象上,矩形ABCD的邊BC在x軸正半軸上,E是對(duì)角線BD的中點(diǎn),函數(shù)y=$\frac{k}{x}$(x>0)的圖象又經(jīng)過A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問題:
(1)求k的值;
(2)求點(diǎn)C的橫坐標(biāo)(用m表示);
(3)當(dāng)∠ABD=45°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.若x、y為實(shí)數(shù),且滿足|x-$\sqrt{3}$|+$\sqrt{y+3}$=0,則($\frac{x}{y}$)3的值是-$\frac{\sqrt{3}}{9}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.x≠2時(shí),分式$\frac{3}{2-x}$有意義;當(dāng)x=-$\frac{9}{2}$時(shí),分式$\frac{x-5}{2x+9}$無意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案