(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

【答案】分析:(1)題利用“兩弦垂直平分線的交點(diǎn)為圓心”可確定圓心位置;
(2)先根據(jù)A、B、C三點(diǎn)坐標(biāo),用待定系數(shù)法求出拋物線的解析式,然后將D點(diǎn)坐標(biāo)代入拋物線的解析式中,即可判斷出點(diǎn)D是否在拋物線的圖象上;
(3)由于C在⊙M上,如果CD與⊙M相切,那么C點(diǎn)必為切點(diǎn);因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點(diǎn)坐標(biāo),分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.
解答:(1)解:如圖1,點(diǎn)M即為所求;

(2)解:由A(0,4),可得小正方形的邊長為1,從而B(4,4)、C(6,2)
設(shè)經(jīng)過點(diǎn)A、B、C的拋物線的解析式為y=ax2+bx+4
依題意,解得
所以經(jīng)過點(diǎn)A、B、C的拋物線的解析式為y=-x2+x+4
把點(diǎn)D(7,0)的橫坐標(biāo)x=7代入上述解析式,得
所以點(diǎn)D不在經(jīng)過A、B、C的拋物線上;

(3)證明:如圖,設(shè)過C點(diǎn)與x軸垂直的直線與x軸的交點(diǎn)為E,連接MC,作直線CD

∴CE=2,ME=4,ED=1,MD=5
在Rt△CEM中,∠CEM=90°
∴MC2=ME2+CE2=42+22=20
在Rt△CED中,∠CED=90°
∴CD2=ED2+CE2=12+22=5
∴MD2=MC2+CD2
∴∠MCD=90°
∵M(jìn)C為半徑
∴直線CD是⊙M的切線.
點(diǎn)評:本題為綜合題,涉及圓、平面直角坐標(biāo)系、二次函數(shù)等知識,需靈活運(yùn)用相關(guān)知識解決問題.本題考查二次函數(shù)、圓的切線的判定等初中數(shù)學(xué)的中的重點(diǎn)知識,試題本身就比較富有創(chuàng)新,在網(wǎng)格和坐標(biāo)系中巧妙地將二次函數(shù)與圓的幾何證明有機(jī)結(jié)合,很不錯的一道題,令人耳目一新.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(diǎn)(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(diǎn)(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

同步練習(xí)冊答案