如圖,正方形ABCD的邊長為4,點(diǎn)P是AB上不與A、B重合的任意一點(diǎn),作PQ⊥DP,Q在BC上,設(shè)AP=x,BQ=y,
(1)求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo),并作出大致圖象.
(1)∵AP=x
∴BP=AB-AP=4-x
∵PQ⊥DP,即∠DPQ=90°
∴∠DPA+∠BPQ=180°-∠DPQ=90°
又∵∠DPA+∠ADP=90°
∴∠ADP=∠BPQ?tan∠ADP=tan∠BPQ?
AP
AD
=
BQ
BP
,即
x
4
=
y
4-x

∴y=-
1
4
(x-2)2+1 (0<x<4)

(2)由上面解析式可知,頂點(diǎn)坐標(biāo)為(2,1),
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為______;
(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說明理由;
(3)連結(jié)FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點(diǎn),找出拋物線上滿足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩個(gè)不同的點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,3),連接BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點(diǎn)D.
(1)求這個(gè)二次函數(shù)的解析式、點(diǎn)D的坐標(biāo)及直線BC的函數(shù)解析式;
(2)點(diǎn)Q在線段BC上,使得以點(diǎn)Q、D、B為頂點(diǎn)的三角形與△ABC相似,求出點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,若存在點(diǎn)Q,請任選一個(gè)Q點(diǎn)求出△BDQ外接圓圓心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點(diǎn)A(-1,-1)和B(3,-9).
(1)求該二次函數(shù)的解析式;
(2)填空:該拋物線的對稱軸是______;頂點(diǎn)坐標(biāo)是______;當(dāng)x=______時(shí),y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=-x2+kx+3的圖象與x軸交于點(diǎn)(3,0)
(1)求函數(shù)的解析式;
(2)畫出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)c(0,3).
(1)求此拋物線所對應(yīng)函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,在其對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a>0)經(jīng)過點(diǎn)A(-3
3
,0
),B(
3
,0
)與y軸交于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D,在△BCD中,邊CD的高為h.
(1)若c=ka,求系數(shù)k的值;
(2)當(dāng)∠ACB=90°,求a及h的值;
(3)當(dāng)∠ACB≥90°時(shí),經(jīng)過探究、猜想請你直接寫出h的取值范圍.
(不要求書寫探究、猜想的過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點(diǎn)在x軸上,且sinA、sinB是關(guān)于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個(gè)根.
(1)判斷△ABC的形狀,關(guān)說明理由;
(2)求m的值;
(3)若這個(gè)三角形的外接圓面積為25π,求△ABC的內(nèi)接正方形(四個(gè)頂點(diǎn)都在三角形三邊上)的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市某工藝廠為配合2010年上海世博會,設(shè)計(jì)了一款成本為20元/件的工藝品投放市場進(jìn)行試銷.該工藝品每天試銷情況經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系______;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤W最大?(利潤=銷售總價(jià)-成本總價(jià)).
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么工藝廠試銷該工藝品每天獲得的利潤最大是多少?

查看答案和解析>>

同步練習(xí)冊答案