已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是(    ).
A.外切B.內(nèi)切C.相交D.相離
A

試題分析:∵⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2=10cm,
R+r=3+7=10,
∴兩圓外切.
故選A.
點評:本題主要考查兩圓外切的位置關(guān)系,外切:d=R+r.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.

(1)求證:AP=PD;
(2)請判斷A,D,F(xiàn)三點是否在以P為圓心,以PD為半徑的圓上?并說明理由;
(3)連接CD,若CD﹦3,BD ﹦4,求⊙O的半徑和DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知圓O的直徑AB、CD互相垂直,弦AE交CD于F,若圓O的半徑為R.
求證:AE·AF=2 R.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知在△ABC中,AB=AC=13,BC=10,那么△ABC的內(nèi)切圓的半徑為( )
A.B.C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點AB在直線MN上,AB=11㎝,⊙A⊙B的半徑均為1㎝,⊙A以每秒2㎝的速度自左向右運動,與此同時,⊙B的半徑也不斷增長,其半徑r(cm)與時間t(秒)之間的關(guān)系式為r=1+t(t≥0)(10分)

(1)試寫出點A,B之間距離d(cm)與時間t(s)之間的函數(shù)表達式
(2)問點A出發(fā)后多少秒兩圓相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點,連AB,且PA,PB的長是方程= 0的兩根,AB =" m." 試求:

(1)⊙O的半徑;(2)由PA,PB,圍成圖形(即陰影部分)的面積. (計算結(jié)果用含有π的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直徑AB為6的半圓,繞A點逆時針旋轉(zhuǎn)60°,此時點B到了點B’,則圖中陰影部分的面積是(    )
A.3pB.6pC.5pD.4p

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題中,假命題的是
A.經(jīng)過兩點有且只有一條直線B.平行四邊形的對角線相等
C.兩腰相等的梯形叫做等腰梯形D.圓的切線垂直于經(jīng)過切點的半徑

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

正方形ABCD中,E是BC邊上一點,以E為圓心、EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為(   )

查看答案和解析>>

同步練習冊答案