【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;

(2)是否存在x的值,使得QP⊥DP?試說明理由.

【答案】(1)S= S不存在最大值,當(dāng)x=2時,S有最小值,最小值為4;(2)當(dāng)x=,QP⊥DP.

【解析】

試題分析:

(1)∵四邊形ABCD為矩形,∴BC=AD=4,CD=AB=3,當(dāng)運動x秒時,則AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=ADAQ=×4x=2x,S△BPQ=BQBP=(3﹣x)x=,S△PCD=PCCD=(4﹣x)3=,又S矩形ABCD=ABBC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣()﹣()==,即S=,∴S為開口向上的二次函數(shù),且對稱軸為x=2,∴當(dāng)0<x<2時,S隨x的增大而減小,當(dāng)2<x≤3時,S隨x的增大而增大,又當(dāng)x=0時,S=5,當(dāng)S=3時,S=,但x的范圍內(nèi)取不到x=0,∴S不存在最大值,當(dāng)x=2時,S有最小值,最小值為4;

(2)存在,理由如下:

由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,當(dāng)QP⊥DP時,則∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴,即,解得x=(舍去)或x=,∴當(dāng)x=,QP⊥DP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形的三邊為 x,xy,x+y xy 都為正整數(shù),則三角形其中一邊長可能為( )

A.31B.41C.51D.61

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】代數(shù)式2x+3中,當(dāng)x取a﹣3時,問2x+3是不是a的函數(shù)?若不是,請說明理由;若是,也請說明理由,并請以a的取值為橫坐標(biāo),對應(yīng)的2x+3值為縱坐標(biāo),畫出其圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與坐標(biāo)軸交于A、B、C三點,其中B(4,0)、C(﹣2,0),連接AB、AC,在第一象限內(nèi)的拋物線上有一動點D,過D作DE⊥x軸,垂足為E,交AB于點F.

(1)求此拋物線的解析式;

(2)在DE上作點G,使G點與D點關(guān)于F點對稱,以G為圓心,GD為半徑作圓,當(dāng)⊙G與其中一條坐標(biāo)軸相切時,求G點的橫坐標(biāo);

(3)過D點作直線DH∥AC交AB于H,當(dāng)△DHF的面積最大時,在拋物線和直線AB上分別取M、N兩點,并使D、H、M、N四點組成平行四邊形,請你直接寫出符合要求的M、N兩點的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著空氣質(zhì)量的惡化,霧霾天氣現(xiàn)象增多,危害加重.森林是“地球之肺”,每年能為人類提供大約28.3億噸的有機物,28.3億可用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個等腰三角形兩邊長分別為3,7,那么它的周長是( 。

A. 17 B. 13 C. 1317 D. 1013

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小方格邊長為1個單位,

(1)請寫出△ABC各點的坐標(biāo).
(2)求出SABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位△A′B′C′,在圖中畫出△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是必然事件的為(
A.購買一張彩票,中獎
B.通常加熱到100℃時,水沸騰
C.任意畫一個三角形,其內(nèi)角和是360°
D.射擊運動員射擊一次,命中靶心

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=8,點E,F(xiàn)分別在AB,AD上,且AE=AF,過點E作EG∥AD交CD于點G,過點F作FH∥AB交BC于點H,EG與FH交于點O.當(dāng)四邊形AEOF與四邊形CGOH的周長之差為12時,AE的值為(
A.6.5
B.6
C.5.5
D.5

查看答案和解析>>

同步練習(xí)冊答案