如圖,直線AB、CD相交于點(diǎn)O.

(1)OE、OF分別是∠AOC,∠BOD的平分線,畫出這個(gè)圖形;

(2)射線OE、OF在同一條直線上嗎?為什么?

(3)畫出∠AOD的平分線OG,OE與OG垂直嗎?為什么?

答案:略
解析:

(1)

(2)射線OE、OF在同一條直線上.

∵∠AOC=BOD(對(duì)頂角相等),∠AOE=AOC,

BOF=BOD(角平分線定義),

∴∠AOE=BOF

∵∠AOE+∠EOB=180°(鄰補(bǔ)角定義),

∴∠EOB+∠BOF=180°,

即∠EOF=180°.

(3)OEOG

∵∠EOG=EOA+∠AOG=AOCAOD,而∠AOC+∠AOD=180°,

∴∠EOG=×180°=90°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點(diǎn)O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請(qǐng)你認(rèn)真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對(duì)頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點(diǎn),EO⊥CD,垂足為O點(diǎn),若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案