【題目】如圖1,在等邊和等邊中,,點(diǎn)P在的高上(點(diǎn)與點(diǎn)不重合),點(diǎn)在點(diǎn)的左側(cè),連接,.
(1)求證:;
(2)當(dāng)點(diǎn)與點(diǎn)重合時(shí),延長(zhǎng)交于點(diǎn),請(qǐng)你在圖2中作出圖形,并求出的長(zhǎng);
(3)直接寫出線段長(zhǎng)度的最小值.
【答案】(1)見(jiàn)解析;(2)作圖見(jiàn)解析,; (3) .
【解析】
(1)利用條件證明,即可證明BD=CP;
(2)根據(jù)等邊三角形的性質(zhì),求出∠BCE=30°,再利用三角函數(shù)解出BF即可.
(3) 取的中點(diǎn),連接,證明,長(zhǎng)度的最小值就是DE長(zhǎng)的最小值,過(guò)點(diǎn)作于,求出PF即可.
(1)證明:是等邊三角形,
∴,,
∵是等邊三角形,
∴,,
∴,
∴,
∴,
∴;
(2)解:如圖2,
∵是等邊三角形,
∴當(dāng)點(diǎn)與點(diǎn)重合時(shí),有,,
∵,
∴,,
∴,
∴,
在中,
∵,,
∴;
(3)長(zhǎng)度的最小值是,
理由是:如圖3,由(1)知:,
∴取的中點(diǎn),連接,則,
∴長(zhǎng)度的最小值就是DE長(zhǎng)的最小值,
過(guò)點(diǎn)作于,垂足就是最小時(shí)點(diǎn)的位置,此時(shí),故長(zhǎng)度的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點(diǎn),試比較∠APB和∠ADB的大小關(guān)系,并說(shuō)明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點(diǎn),試問(wèn)當(dāng)P點(diǎn)位于何處時(shí)∠APB最大?并說(shuō)明理由;
問(wèn)題解決
(3)某兒童游樂(lè)場(chǎng)的平面圖如圖③所示,場(chǎng)所工作人員想在OD邊上點(diǎn)P處安裝監(jiān)控裝置,用來(lái)監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問(wèn)在OD邊上是否存在一點(diǎn)P,使得∠APB最大,若存在,請(qǐng)求出此時(shí)OP的長(zhǎng)和∠APB的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于(-1,0),(3,0)兩點(diǎn),則下列說(shuō)法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)為拋物線上三點(diǎn),且-1<x1<x2<1,x3>3,則y2<y1<y3,其中正確的結(jié)論是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn).
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q.
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市有,兩種型號(hào)的瓶子,其容量和價(jià)格如表,小張買瓶子用來(lái)分裝15升油(瓶子都裝滿,且無(wú)剩油);當(dāng)日促銷活動(dòng):購(gòu)買型瓶3個(gè)或以上,一次性返還現(xiàn)金5元,設(shè)購(gòu)買型瓶(個(gè)),所需總費(fèi)用為(元),則下列說(shuō)法不一定成立的是( )
型號(hào) | A | B |
單個(gè)盒子容量(升) | 2 | 3 |
單價(jià)(元) | 5 | 6 |
A.購(gòu)買型瓶的個(gè)數(shù)是為正整數(shù)時(shí)的值B.購(gòu)買型瓶最多為6個(gè)
C.與之間的函數(shù)關(guān)系式為D.小張買瓶子的最少費(fèi)用是28元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)黨的“文化自信”號(hào)召,某校開(kāi)展了古詩(shī)詞誦讀大賽活動(dòng),現(xiàn)隨機(jī)抽取部分同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì),并繪制成如下的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息,解答下列各題:
(1)直接寫出a的值,a= ,并把頻數(shù)分布直方圖補(bǔ)充完整.
(2)求扇形B的圓心角度數(shù).
(3)如果全校有2000名學(xué)生參加這次活動(dòng),90分以上(含90分)為優(yōu)秀,那么估計(jì)獲得優(yōu)秀獎(jiǎng)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù),若存在坐標(biāo)同時(shí)滿足一次函數(shù)和反比例函數(shù),則二次函數(shù)為一次函數(shù)和反比例函數(shù)的“共享”函數(shù).
(1)試判斷(需要寫出判斷過(guò)程):一次函數(shù)和反比例函數(shù)是否存在“共享”函數(shù)?若存在,寫出它們的“共享”函數(shù)和實(shí)數(shù)對(duì)坐標(biāo);
(2)已知整數(shù)滿足條件:,并且一次函數(shù)與反比例函數(shù)存在“共享”函數(shù),求整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測(cè)區(qū),其中點(diǎn)C、D為監(jiān)測(cè)點(diǎn),已知點(diǎn)C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(zhǎng)(結(jié)果精確到1米)
(2)如果道路AB的限速為60千米/時(shí),一輛汽車通過(guò)AB段的時(shí)間為90秒,請(qǐng)你判斷該車是否是超速,并說(shuō)明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市商場(chǎng)為方便消費(fèi)者購(gòu)物,準(zhǔn)備將原來(lái)的階梯式自動(dòng)扶梯改造成斜坡式自動(dòng)扶梯.如圖所示,已知原階梯式自動(dòng)扶梯長(zhǎng)為,坡角為30°;改造后的斜坡式自動(dòng)扶梯的坡角為15°,改造后的斜坡式自動(dòng)扶梯水平距離增加了,請(qǐng)你計(jì)算的長(zhǎng)度,(結(jié)果精確到,參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com