(2010•荊門(mén))如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )

A.
B.
C.1
D.2
【答案】分析:首先作A關(guān)于MN的對(duì)稱點(diǎn)Q,連接MQ,然后根據(jù)圓周角定理、圓的對(duì)稱性質(zhì)和勾股定理解答.
解答:解:作A關(guān)于MN的對(duì)稱點(diǎn)Q,連接MQ,BQ,BQ交MN于P,此時(shí)AP+PB=QP+PB=QB,
根據(jù)兩點(diǎn)之間線段最短,PA+PB的最小值為QB的長(zhǎng)度,
連接AO,OB,OQ,
∵B為中點(diǎn),
∴∠BON=∠AMN=30°,
∴∠QON=2∠QMN=2×30°=60°,
∴∠BOQ=30°+60°=90°.
∵直徑MN=2,
∴OB=1,
∴BQ==
則PA+PB的最小值為
故選B.
點(diǎn)評(píng):本題較復(fù)雜,解答此題的關(guān)鍵是找到點(diǎn)A的對(duì)稱點(diǎn),把題目的問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:選擇題

(2010•荊門(mén))如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )

A.
B.
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2010•荊門(mén))如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )

A.
B.
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省荊門(mén)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•荊門(mén))如圖,圓O的直徑為5,在圓O上位于直徑AB的異側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P,已知BC:CA=4:3,點(diǎn)P在半圓弧AB上運(yùn)動(dòng)(不與A、B重合),過(guò)C作CP的垂線CD交PB的延長(zhǎng)線于D點(diǎn).
(1)求證:AC•CD=PC•BC;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到AB弧中點(diǎn)時(shí),求CD的長(zhǎng);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積最大?并求這個(gè)最大面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省荊門(mén)市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•荊門(mén))如圖是一個(gè)包裝紙盒的三視圖(單位:cm),則制作一個(gè)紙盒所需紙板的面積是( )
A.75(1+)cm2
B.75(1+)cm2
C.75(2+)cm2
D.75(2+)cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市昆山市中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2010•荊門(mén))如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )

A.
B.
C.1
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案