【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)

【答案】電線桿的高度為(2+4)米

【解析】

試題延長ADBC的延長線于E,作DF⊥BEF,根據(jù)直角三角形的性質(zhì)和勾股定理求出DF、CF的長,根據(jù)正切的定義求出EF,得到BE的長,根據(jù)正切的定義解答即可.

試題解析:延長ADBC的延長線于E,作DF⊥BEF,

∵∠BCD=150°,

∴∠DCF=30°,又CD=4,

∴DF=2,CF==2,

由題意得∠E=30°,

∴EF==2,

∴BE=BC+CF+EF=6+4,

∴AB=BE×tanE=6+4×=2+4)米,

答:電線桿的高度為(2+4)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtBCD中,∠CBD=90°,BC=BD,點ACB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EFEA,交CD所在直線于點F.

(1)當(dāng)點E在線段BD上移動時,如圖(1)所示,求證:BC﹣DE=DF.

(2)當(dāng)點E在直線BD上移動時,如圖(2)、圖(3)所示,線段BC、DEDF又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,且AB=4,點C在半圓上,OCAB,垂足為點O,P為半圓上任意一點,過P點作PEOC于點E,設(shè)OPE的內(nèi)心為M,連接OM、PM.

(1)求∠OMP的度數(shù);

(2)當(dāng)點P在半圓上從點B運動到點A時,求內(nèi)心M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當(dāng)x=1時,y=0;當(dāng)x=-3時,y=4.

(1)求y與x的函數(shù)關(guān)系式,并說明此函數(shù)是什么函數(shù);

(2)當(dāng)x=3時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A自行車B電動車,C公交車,D家庭汽車E其他五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題

1在這次調(diào)查中,一共調(diào)查了 名市民

2扇形統(tǒng)計圖中C組對應(yīng)的扇形圓心角是

3請補全條形統(tǒng)計圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有3本和6本七年級上冊的數(shù)學(xué)課本整齊地疊放在講臺上,請根據(jù)圖中所給出的數(shù)據(jù)信息,解答下列問題:

1)當(dāng)講臺上整齊疊放的七年級上冊數(shù)學(xué)課本數(shù)為本時,請寫出這摞課本距離地面的最大高度(用含的式子表示);

2)若從桌面上整齊疊放成一摞的60本七年級上冊數(shù)學(xué)課本中取走18本,求余下的一摞課本距離地面的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,

(1)求BFFC的長;

(2)求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點DOB的中點,點E是線段AB上的動點,連結(jié)DE,作DFDE,交OA于點F,連結(jié)EF.已知點EA點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.

(1)如圖1,當(dāng)t=3時,求DF的長.

(2)如圖2,當(dāng)點E在線段AB上移動的過程中,DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖1)按兩種不同的方式,不重疊地放在一個底面為長方形(一邊長為4)的盒子底部(如圖2、圖3),盒子底面未被卡片覆蓋的部分用陰影表示.已知陰影部分均為長方形,且圖2與圖3陰影部分周長之比為56,則盒子底部長方形的面積為_____

查看答案和解析>>

同步練習(xí)冊答案