如圖,已知直線L與⊙○相切于點A,直徑AB=6,點PL上移動,連接OP交⊙○于點C,連接BC并延長BC交直線L于點D

(1) 若AP=4, 求線段PC的長

(2) 若ΔPAO與ΔBAD相似,求∠APO的度數(shù)和四邊形OADC的面積(答案要求保留根號)

 
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知直線MN與直線MN同側的兩點A、B,試在MN上找一點,使得PA=PB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,已知直線AB與CD相交于點O,OB平分∠EOD,∠1+∠2=90°,
問:圖中的線是否存在互相垂直的關系,若有,請寫出哪些線互相垂直,并說明理由;若無,直接說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線L與⊙O相切于點A,直徑AB=6,點P在L上移動,連接OP交⊙O于點C,連接BC并延長BC交直線L于點D.
精英家教網(wǎng)(1)若AP=4,求線段PC的長;
(2)若△PAO與△BAD相似,求∠APO的度數(shù)和四邊形OADC的面積(答案要求保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB與CD相交于點O,OE、OF分別是∠BOD、∠AOD的平分線.
(1)∠DOE的補角是
∠AOE或∠COE
∠AOE或∠COE
;
(2)若∠BOD=62°,求∠AOE和∠DOF的度數(shù);
(3)判斷射線OE與OF之間有怎樣的位置關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線l1與l2交于一點P,l1的函數(shù)表達式是y=2x+3,l2的函數(shù)表達式是y=kx+b(k≠0).點P的橫坐標是-1,且l2與y軸的交點A的縱坐標也是-1.
(1)求直線l2的函數(shù)表達式.
(2)根據(jù)圖象,直接寫出當x在什么范圍時,有2x+3>kx+b>-1.

查看答案和解析>>

同步練習冊答案