【題目】已知:∠AOB和兩點(diǎn)C、D,求作一點(diǎn)P,使PC=PD,且點(diǎn)P到∠AOB的兩邊的距離相等.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明)
【答案】見詳解.
【解析】
由所求的點(diǎn)P滿足PC=PD,利用線段垂直平分線定理得到P點(diǎn)在線段CD的垂直平分線上,再由點(diǎn)P到∠AOB的兩邊的距離相等,利用角平分線定理得到P在∠AOB的角平分線上,故作出線段CD的垂直平分線,作出∠AOB的角平分線,兩線交點(diǎn)即為所求的P點(diǎn).
解:如圖所示:
作法:(1)以O為圓心,任意長為半徑畫弧,與OA、OB分別交于兩點(diǎn);
(2)分別以這兩交點(diǎn)為圓心,大于兩交點(diǎn)距離的一半長為半徑,在角內(nèi)部畫弧,兩弧交于一點(diǎn);
(3)以O為端點(diǎn),過角內(nèi)部的交點(diǎn)畫一條射線;
(4)連接CD,分別為C、D為圓心,大于CD長為半徑畫弧,分別交于兩點(diǎn);
(5)過兩交點(diǎn)畫一條直線;
(6)此直線與前面畫的射線交于點(diǎn)P,
∴點(diǎn)P為所求的點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分別找一點(diǎn)E、F,使△DEF的周長最。藭r(shí),∠EDF=( )
A.αB.C.D.180°-2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)揚(yáng)州市某風(fēng)景區(qū)的旅游信息,公司組織一批員工到該風(fēng)景區(qū)旅游,支付給旅行社元. 公司參加這次旅游的員工有多少人?
揚(yáng)州市某風(fēng)景區(qū)旅游信息表
旅游人數(shù) | 收費(fèi)標(biāo)準(zhǔn) |
不超過人 | 人均收費(fèi)元 |
超過人 | 每增加人,人均收費(fèi)降低元,但人均收費(fèi)不低于元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長線上一點(diǎn),連結(jié)DE,過頂點(diǎn)B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點(diǎn)G為CD的中點(diǎn),求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班參加一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競賽結(jié)果,每個(gè)學(xué)生至少答對(duì)了一題,三題全答對(duì)的有1人,答對(duì)其中兩道題的有15人,答對(duì)題a的人數(shù)與答對(duì)題b的人數(shù)之和為29,答對(duì)題a的人數(shù)與答對(duì)題c的人數(shù)之和為25,答對(duì)題b的人數(shù)與答對(duì)題c的人數(shù)之和為20,在這個(gè)班的平均成績是__分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)B的坐標(biāo)為(8,4),將該長方形沿OB翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,OD與BC交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)M是OB上任意一點(diǎn),點(diǎn)N是OA上任意一點(diǎn),是否存在點(diǎn)M、N,使得AM+MN最。咳舸嬖,求出其最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中AB=AC,∠BAC=90°,分別過B、C作過A點(diǎn)的直線的垂線,垂足為D、E.
(1)求證:△AEC≌△BDA;
(2)如果CE=2,BD=4,求ED的長是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com