小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,這個三角形面積S最大?最大面積是多少?
【答案】分析:(1)S=x×這邊上的高,把相關數(shù)值代入化簡即可;
(2)結合(1)得到的關系式,利用公式法求得二次函數(shù)的最值即可.
解答:解:(1)S=-x2+20x;

(2)∵-<0,
∴S有最大值,
∴當x=-=-=20時,
S有最大值為==200cm2
∴當x為20cm時,三角形最大面積是200cm2
點評:考查二次函數(shù)的應用;掌握二次函數(shù)的頂點為(-),是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為xcm的邊與這條邊上的高之和為40cm,這個三角形的最大面積是
200cm2
200cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•哈爾濱)小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(黑龍江哈爾濱卷)數(shù)學(帶解析) 題型:解答題

小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(黑龍江哈爾濱卷)數(shù)學(解析版) 題型:解答題

小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.

(1)請直接寫出S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);

(2)當x是多少時,這個三角形面積S最大?最大面積是多少?

 

查看答案和解析>>

同步練習冊答案