【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對(duì)角線BD于點(diǎn)P , 垂足為E , 連接CP , 求∠CPB的度數(shù).

【答案】解答:解:如下圖,先連接AP , 由四邊形ABCD是菱形,∠ADC=72°,可得∠BAD=180°-72°=108°,根據(jù)菱形對(duì)角線的對(duì)稱性可得∠ABD=∠ADBADC ,EPAD的垂直平分線,由垂直平分線的對(duì)稱性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB-∠DAP=108°-36°=72°,在△BAP中,∠APB=180°-∠BAP-∠ABP=180°-72°-36°=72°,由菱形對(duì)角線的對(duì)稱性可得∠CPB=∠APB=72°.

【解析】本題開放性較強(qiáng),解法有多種,可以從菱形、線段垂直平分線的性質(zhì)、對(duì)稱等方面去尋求解答方法,在這些方法中,最容易理解和表達(dá)的應(yīng)為對(duì)稱法,這也應(yīng)該是本題考查的目的;靈活應(yīng)用菱形、垂直平分線的對(duì)稱性,可使解題過程更為簡(jiǎn)便快捷.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識(shí),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等,以及對(duì)菱形的性質(zhì)的理解,了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是O的直徑,AM、BN是O的兩條切線,D、C分別在AM、BN上,DC切O于點(diǎn)E,連接OD、OC、BE、AE,BE與OC相交于點(diǎn)P,AE與OD相交于點(diǎn)Q,已知AD=4,BC=9. 以下結(jié)論:

①⊙O的半徑為 ODBE PB= tanCEP=

其中正確的結(jié)論有(

A. 1個(gè) B. 2個(gè) C.3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,過點(diǎn)ABD的平行線交CD的延長(zhǎng)線于點(diǎn)E , 則下列式子不成立的是( 。.

A.DADE
B.BDCE
C.∠EAC=90°
D.∠ABC=2∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形的周長(zhǎng)為20cm,兩鄰角的比為1:3,則菱形的面積為(  ).
A.25cm2
B.16cm2       
C. cm2
D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是 A(﹣3,﹣1)、B(1,3)、C(2,﹣3)

(1)在平面直角坐標(biāo)系中描出各點(diǎn)并畫出△ABC;
(2)將△ABC向下平移3個(gè)單位,再向右平移2個(gè)單位,得到△A′B′C′,畫出△A′B′C;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE.將ADE沿AE對(duì)折至AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①ABG≌△AFG;②BG=GC;③EG=DE+BG;④AGCF;⑤S△FGC=3.6.其中正確結(jié)論的個(gè)數(shù)是(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為新建一個(gè)以環(huán)保為主題的公園,某地開辟了一塊長(zhǎng)方形的荒地,已知這塊荒地的長(zhǎng)是寬的3倍,它的面積為120000m2 , 那么公園的寬為(
A.200m
B.400m
C.600m
D.200m或600m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位.在RtABC中,C=90°,AC=3,BC=4.

(1)試在圖中做出ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形AB1C1;

(2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);

(3)根據(jù)(2)的坐標(biāo)系作出與ABC關(guān)于原點(diǎn)對(duì)稱的圖形A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組為了探究函數(shù)y=x2﹣|x|的圖象和性質(zhì),根據(jù)以往學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),列表確定了該函數(shù)圖象上一些點(diǎn)的坐標(biāo),表格中的m=

x

﹣2

﹣1.5

﹣1

﹣0.5

0

0.5

1

1.5

2

y

2

0.75

0

﹣0.25

0

﹣0.25

0

m

2

查看答案和解析>>

同步練習(xí)冊(cè)答案