【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù).
【答案】
(1)證明:∵AB=AC,
∴∠B=∠C.
∵AB=AD+BD,AB=AD+EC,
∴BD=EC.
在△DBE和△ECF中,
,
∴△DBE≌△ECF(SAS)
∴DE=EF,
∴△DEF是等腰三角形
(2)解:∵∠A=40°,
∴∠B=∠C= (180°﹣40°)=70°,
∴∠BDE+∠DEB=110°.
又∵△DBE≌△ECF,
∴∠BDE=∠FEC,
∴∠FEC+∠DEB=110°,
∴∠DEF=70°.
【解析】(1)通過全等三角形的判定定理SAS證得△DBE≌△ECF,由“全等三角形的對應(yīng)邊相等”推知DE=EF,所以△DEF是等腰三角形;(2)由等腰△ABC的性質(zhì)求得∠B=∠C= (180°﹣40°)=70°,所以根據(jù)三角形內(nèi)角和定理推知∠BDE+∠DEB=110°;再結(jié)合△DBE≌△ECF的對應(yīng)角相等: ∠BDE=∠FEC,故∠FEC+∠DEB=110°,易求∠DEF=70°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標(biāo);
(2)若在y軸上存在點 M,連接MA,MB,使S△MAB=S平行四邊形ABDC , 求出點M的坐標(biāo).
(3)若點P在直線BD上運動,連接PC,PO.
①若P在線段BD之間時(不與B,D重合),求S△CDP+S△BOP的取值范圍;
②若P在直線BD上運動,請直接寫出∠CPO、∠DCP、∠BOP的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉(zhuǎn)90°,得到△A1B1C1,△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2.
(1)畫出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點,△ABC經(jīng)旋轉(zhuǎn)、平移后點P的對應(yīng)點分別為P1、P2,請寫出點P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:
(1)求m關(guān)于x的一次函數(shù)表達式;
(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標(biāo)是( )
A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com