【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點(diǎn)D在邊CB上,反比例函數(shù)(k>0)在第一象限的圖象經(jīng)過(guò)點(diǎn)E,若正方形AOBC和正方形CDEF的面積之差為6,則k=_____.
【答案】6
【解析】
設(shè)出正方形AOBC的邊長(zhǎng)為與正方形CDEF的邊長(zhǎng),表示出E點(diǎn),然后E點(diǎn)在反比例函數(shù)上,直接代入,利用面積直接解出k即可
解:設(shè)正方形AOBC的邊長(zhǎng)為a,正方形CDEF的邊長(zhǎng)為b,則E(a﹣b,a+b),
∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)E,
∴(a+b)(a﹣b)=k,
整理為a2﹣b2=k,
∵S正方形AOBC=a2,S正方形CDEF=b2,
∴S正方形AOBC﹣S正方形CDEF=6,
即a2﹣b2=6,
∴k=6,
故答案為:6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,要使它成為菱形,那么需要添加的條件可以是( )
A.AC=BD B.AB=AC C.∠ABC=90°D.AC⊥BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:水果店第一次用500元購(gòu)進(jìn)某種水果,由于銷(xiāo)售狀況良好,該店又用1650元購(gòu)進(jìn)該品種水果,所購(gòu)數(shù)量比第一次增加200千克,但進(jìn)貨價(jià)每千克上漲了10%.
(1)第一次所購(gòu)水果的進(jìn)貨價(jià)是每千克多少元?
(2)水果店以相同價(jià)格銷(xiāo)售這些水果,若該水果店售完這些水果獲利不低于1450元,則該種水果的售價(jià)至少應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多20元,而用800元購(gòu)買(mǎi)A種零件的數(shù)量和用600元購(gòu)買(mǎi)B種零件的數(shù)量相等
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件共200件,工廠購(gòu)買(mǎi)兩種零件的總費(fèi)用不超過(guò)14700元,求工廠最多購(gòu)買(mǎi)A種零件多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn)再求值:
(1)[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,y=
(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中x=﹣2,y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為、、
(1)畫(huà)出關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的;
(2)將繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn),畫(huà)出對(duì)應(yīng)的;
(3)若以、、、為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出在第一象限中的點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像相交于點(diǎn)、.
(1)求出反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)觀察圖像,直接寫(xiě)出使得成立的自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用三種大小不同的六個(gè)正方形和一個(gè)缺角的正方形拼成長(zhǎng)方形,其中,,則長(zhǎng)方形的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com